http://www.patentlens.net/

a9y United States

enabling INNOVATION

US 20080071818A1

a2) Patent Application Publication (o) Pub. No.: US 2008/0071818 A1l

Apanowicz et al.

43) Pub. Date: Mar. 20, 2008

(54) METHOD AND SYSTEM FOR DATA
COMPRESSION IN A RELATIONAL

Cas (Kazimierz) Apanowicz,
Toronto (CA); Victoria K.

Eastwood, Toronto (CA); Dominik

A. Slezak, Warszawa (PL); Piotr
D. Synak, Warszawa (PL);
Arkadiusz G. Wojna, Warszawa
(PL); Marcin Wojnarski,
Warszawa (PL); Jakub Z.
Wroblewski, Lomianki (PL)

Correspondence Address:
OGILVY RENAULT LLP

1981 MCGILL COLLEGE AVENUE, SUITE

MONTREAL, QC H3A2Y3

DATABASE
(75) Inventors:
1600
(73) Assignee:
(21) Appl. No.:
oy 202
Client <

INFOBRIGHT INC., Toronto

(22) Filed: Aug. 22, 2007

Related U.S. Application Data

(60) Provisional application No. 60/845,167, filed on Sep.
18, 2006.
Publication Classification
(51) Int. CL
GO6F 17/30 (2006.01)
(52) US.CL .o, 707/101; 707/E17.045
(57) ABSTRACT

A method for applying adaptive data compression in a
relational database system using a filter cascade having at
least one compression filter stage in the filter cascade. The
method comprises applying a data filter associated with the
compression filter stage to the data input to produce recon-
struction information and filtered data, then compressing the
reconstruction information to be included in a filter stream.
The filtered data is provided as a compression filter stage
output. The method may comprise evaluating whether the

(€CA) compression filter stage provides improved compression
compared to the data input. The filter stage output may be
11/843,019 used as the input of a subsequent compression filter stage.
200
RDBMS 200 /-
intermedinte query resujts
204 206 2
/s Vs | 8 l C 210
P Queny Parser » R Juery i Query o] Query Execution
Qptimizer Optimizer Module
220
-~ 240 i L i 246
I?'nm\'h‘:dgc Knowledge Decompression
Grid Optimizer Grid Manager Module
A A

A

Query
Statistics

A, J = F v 201
242
KNs Database

250 203
L~ 254

3 i] External

‘Module 'I Database

Export Module

~ 238

Import Module I— 252
Compression I "
Module I‘

— 256
] Module r‘

Utilities

http://www.patentlens.net/

enabling INNOVATION

US 2008/0071818 A1

Mar. 20, 2008 Sheet 1 of 15

Patent Application Publication

http://www.patentlens.net/

sammn

apnpoyy

uonea) NN 1'Dld

Y

96T

» SPOIN
1 uvotssarduiony

8T - npopy podusg

8vC ~
umﬁ_wyk dnpo
pudixy y uotssasdutosagy

¥$T -1 Anpoj! todxz

£0T 0st sonsumis sonsumg
aduspy da Liondy
asequie ™ B
N [A 74 4 {4
) gy
10 A $7z
Y Y vy
ANPON 1odeueyy pun Jpzundo puo
uoissardwosacy sBpamouy - apajmouy
op A (1174 :\
¢ 0Zc .\ H
A 4
azrud(y
3npopy zwd oI .
uonnooxy And [bu:OO “ :o:nﬁvuwwaoz] PSEgAR0 1« > 1RHD
A,
A 0T —
oiz %0z 90z voz coe
r\ Simsa Aaand PRI . qml.u
¢ SIHMY
00<

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

Patent Application Publication = Mar. 20, 2008 Sheet 2 of 15 US 2008/0071818 A1

7 262

FIG. 2

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 3 of 15

Patent Application Publication

1743

91¢ A

pic A

uoissasdiuoy

< 1

uopeWIOjUl Nddl
uo paseq wyinodie uoissaxdwod 1oy sdweed 193}55

135 ©JEP Padnpal ulBiqo O] SANIRA [N JAOURY

BJep UWN0d 0 NSEA {{NN 213l

~ r

BI1Ep URIN|OD JO
ad41 viep uo paseq wiino3|e uoissasdwion 199(5S

80¢ 4

(ssa1pino Ajjeuonido ‘uoneuuoyuy jeondfeue)

t "OI
(pug)
y
Ndd pue 4@ 240§ <
12T dd
< A A 8i¢

YSew P

Ol ySew ynu [Inu ssardwioy | FOT Jsew jjnu

passasdwiod e s o1e
CTTNdA

90¢ ~ 1

e N4 »

00¢ il

NdQ dwe[noje)

TILP HWN{0d UIRIqO

PO a

uotssasduiod 10§ ejep uwINo? 192}35

()

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

Patent Application Publication = Mar. 20, 2008 Sheet 4 of 15 US 2008/0071818 A1

b o
U
Pt
— =
o~
o
v
153
&
&,
B
=
o
v
D=
<
o oo
3 e
g M &
o 2 %
Slwo]] e~ = = g o
R T le|ole g £
3] E .
=] A Y [
b5t =
& j=1
o]

0
i
0
0
1
1
i
0
Null Mask 404
DPN 222

NULL
5000
NULL
NULL
6
8
7
NULL

Partial column 402

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 5 of 15

Patent Application Publication

S "OId

(m)

BIEP ULIN[OD [BUISLIO
UIRIQo 01 PAINPAI BIRP Padnpal o} ysew jjnu Ajddy

905 ﬁ

19S BIBP paonpad uielqo o3 yord eiep ssardwiosa(g

s 7 ;

3d.1 erep uo paseq wiitioFe vorssaadwodap 109105
0§ L ﬁ

o0s — (ues)

http://www.patentlens.net/

http://www.patentlens.net/

Patent Application Publication

Data clements 602

(321

o~

FIG. 6A

(42}

A\ 4

HIST object 604

Mar. 20, 2008 Sheet 6 of 15

Max

Min

Character position

o

Data elements 606

enabling INNOVATION

US 2008/0071818 A1

O
=
Ll I~] SIS IO <
[B e B] - oI ||
- QIO — |
—] e S|l oiCc o
[+« IR & 4 & e s
a
<
S| B3
HEE
S0 8

CMAP object 606

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 7 of 15

Patent Application Publication

~—1g B[BleQ

VL DIA
weads a4 T ; ;
80, —/
: ¥20iq : : ¥20[q yoorg |
i uorssazdwo)y i © | wotssaadwio) | . | uorssardony | :
: : : : : P e
upQL i/ aroL— % _m E e PO
: agoL TV :
; P ndino 13314 dino iy’ | m
N PRI, Cee e : : v PR 10L

21y Smo :

2y eeq

mdur ereq

:NE.\ fe.\ \ s S

qe0L veOL
ugos afels a5e1s Jayy a8ers 1oy
19311 uorssaxdwio) voissardwoy uoissaxdwo))

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 8 of 15

Patent Application Publication

4L D14

C)

ON

(safes ay

uoissasd oo atouwt Auy
0cL SOA

i
H
{
H
{

8L ~_J

indino
121]1) O1 elEp paJoljl) SUIUIBLIAY PUDS "WEINS
1331 01 puds pue BIEP UONONNSUOIL ssaiduro))

4
i

H

}001q uoissarduiod 0y

91L /\ TIEP UOLIDNIISUODBE PUdS ‘Biep o1 101(1y eyep Ajddy

i
| sax

%_mmoa woo 2]qeidand

¢

ON /mu?oa Ja11y viep sao(

\Illu -
piL /w\

apeased
sy ut o3ess 1011y uoissardwion jxou gjenjeag

1

apeosud Ity oy 03 vep andug

4

C)

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 9 of 15

Patent Application Publication

IL DA

8hL

L

1472

[4:72

0rL

iso%us

131} aowt Auy SOA

05t —~~_/

i

i

v

a8e)s 101[1) 1xoU 10§
indut se ndino apiaoiy

m indino o3 a)Im pue viep
[1DIISUOD2T 0 UOTULIOJUT UONONAISUOID IS(]

weans
\/\ S:mEo&:o:a::o.“:_co:u_Em:cuw.:oﬁﬁm

i dsuanbas

i a5e1s 2911y ySnoay) preayoeq ss10ARY
—_— Y :;n Joeq L

| apeased o)1 o3 indur 931 aPIAOY, | P
—_— p M1} O3 1NdUL ISILE 3PIAOL]]

Adw o1 indur soyy szijenu)

C)

f (495

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 10 of 15

Patent Application Publication

018
weang 31|
A
8 D14
808 1opo)
J 3
!
t
,, uonnquusi(
v Aiiqrqoaq
i
\
osa € | T |8 osa| z | € |osa| ¢ |
Pig \
ade1s 1y 1xou . \
oy indino zap14 908 sanjeA 1 14 ,,

1 £ 053
4 S
< ¢
£ [4

v ! Asuanbauy joquikg

Cig sonjep aey FOg AIeUoIdI
LN L R tjz e | 9| ¢
208 vieqy mnduj

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 11 of 15

Patent Application Publication

asels
1931y snoiadad
woyy ding

018
WeING 1211

\

osd

[o B o B it

o
el

Asuanboiy joquiks

A b0g Areuonoi
N
N\

N
uonnqusiq ™
Anflqeqosd N
N

AN
AS

808 13p0D

Z1g sanjep sy

Js4 ¢ 4 19,°XC I B4 € 1083 ¢
918 Sanju A uanbasj poposaq
y
14 £ 4 I [4 £ 9 <

818 tiec] mdug pajonnsuosay

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

Patent Application Publication = Mar. 20, 2008 Sheet 12 of 15 US 2008/0071818 A1

o
Lom-
<
P
S
/(D £ =
= o
b
S S
i
fw
[~
%
o'
g =
S
o
£ =
o = S
L
4
s
2
5
- P
=
fo__.) &
| £
ol
e

FIG. 10

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 13 of 15

Patent Application Publication

11 "Old

7
sousneg le

] Jasopdxg Apnd

6011 -+~

3josuo)) wowadeuey
ISNOIRAN paIaL],

asnoyaIem
K1epuodsg

<l

«.o__,\

i Y
fnnn g

1AIDG
juauwIaBzugy qof

uoduyy uodxzy
\

\
Aan S
uodx;y yiodu]

[- o o -

mc:.\

oc__,\\

£011

3SNOYIITM
Lreunag

ol

nzieuy S0 LAnd

om__\ i

uonestddy
1oUAIS] ——— ILE 1 19)

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 14 of 15

Patent Application Publication

<l "Old

SISNOYIL AL AIPUOIIS
pue el 10f pun
A8pajanony payran

ISTOYME A

n

L3epuoddg
80C1
SMpON
Aand)
% SSAULIS
<> m
90ZI v

oom_:\

>

Wl

o4 Iy

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071818 A1

Mar. 20, 2008 Sheet 15 of 15

00€1 l\;

Patent Application Publication

€l "OId

ERTIRES |

tonedIuNuo)

suoneoyddy

waisAg Sunesddp

105530014 / ol¢t

ot \

H

sug

¥

WO

VY

0gel I\

g1l .\\ 91et .\\

KIowap

— 5301437 Induj

80¢1 a\

. Aeidsiq

90€1 \\

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

METHOD AND SYSTEM FOR DATA
COMPRESSION IN A RELATIONAL
DATABASE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/845,167, filed Sep. 18, 2006, the
entirety of which is hereby incorporated by reference.

TECHNICAL FIELD

[0002] The present disclosure relates generally to a rela-
tional database management systems (RDBMS), and more
particularly to a method and system for data compression in
a RDBMS.

BACKGROUND

[0003] Databases and database management systems are
being implemented in more and more businesses, organiza-
tions and institutions, and are being used to store and
manage increasingly large amounts of data of increasingly
different types and complexity. As a result, there is a need for
improved database management solutions.

SUMMARY

[0004] A relational database management system
(RDBMS) in which analytical information about data and
relationships within data are utilized in query planning and
execution is described along with methods for using such an
RDBMS. Analytical techniques such as rough set analysis
(RSA) techniques may be applied to this analytical infor-
mation to attempt to minimize the amount of information
required to resolve a query and/or determine the fastest
approach to retrieve the necessary data to answer the query.
In some instances, queries may be planned and executed
based on the analytical information (e.g., statistical infor-
mation) about the database without accessing the underlying
data. Methods of compression and decompression may also
be applied to data stored in such an RDBMS. Such methods
may be optimized for the data.

[0005] In some aspects, there may be provided a method
for applying adaptive data compression in a relational data-
base system, the method using a filter cascade having at least
one compression filter stage in the filter cascade, the method
including: i.) providing data input to a compression filter
stage of the filter cascade; ii.) evaluating whether the com-
pression filter stage provides improved compression com-
pared to the data input; iii.) applying a data filter associated
with the compression filter stage to the data input if the
compression filter stage provides improved compression, to
produce reconstruction information and filtered data; iv.)
compressing the reconstruction information to be included
in a filter stream; and v.) providing the filtered data as a
compression filter stage output for the compression filter
stage.

[0006] In some aspects, the method may include the steps
of: vi.) determining if additional compression filter stages
exist for consideration; vii.) providing the compression filter
stage output as the data input to a subsequent compression
filter stage if additional compression filter stages exist; and
viii.) repeating steps i.) to v.) for the subsequent compression
filter stage.

enabling INNOVATION

Mar. 20, 2008

[0007] In some aspects, the method may include the step
of: ix.) repeating steps i.) through viii.) n times, where n is
an integer representing the number of stages of compression
filter stages in the filter cascade.

[0008] In another aspect, there may be provided a method
for performing data compression using a filter cascade on
data in a relational database, the method including the steps
of: providing data input having a plurality of data elements;
applying a first data filter of a first compression filter stage
to the data input, producing reconstruction information and
filtered data; compressing the reconstruction information
and including the compressed reconstruction information in
a filter stream; providing the filtered data as a compression
filter output; and repeating the applying and compressing
steps using the filter output as an input for at least one
subsequent compression filter stage.

[0009] In some aspects, the method may include the steps
of, before the applying step: evaluating whether a given
compression filter stage would provide improved compres-
sion compared to the data input; and where evaluation of the
given compression filter stage finds that the given compres-
sion filter stage does not provide improved compression, the
given compression filter stage is not applied, and the evalu-
ating step is repeated with at least one subsequent compres-
sion filter stage.

[0010] In another aspect, there may be provided a method
for applying data compression for alphanumeric data in a
relational database, the alphanumeric data including a plu-
rality of alphanumeric characters, the method including the
steps of: providing the alphanumeric data to a data com-
pression module; determining a probability distribution for
each character of the alphanumeric data using a suffix-
prediction algorithm; and compressing the alphanumeric
data using the probability distribution.

[0011] In another aspect, there may be provided a method
of data decompression of compressed data in a relational
database, the method including the steps of: providing a
filter stream including compressed data that was compressed
using the compression methods described above; retrieving
from the compressed data the identity and order of the
compression filter stages that were applied to the com-
pressed data; and applying corresponding decompression
filters for each of the compression filter stages in a reverse
order in which the compression filter stages were applied
during compression.

[0012] In another aspect, there may be provided a system
for applying adaptive data compression in a relational data-
base system, the system including: a database server includ-
ing: a microprocessor for controlling operation of the data-
base server; and a memory coupled to the microprocessor;
the database server including a compression module resident
in the memory for execution by the microprocessor, the
compression module being configured to carry out the
compression methods described above.

[0013] In another aspect, there may be provided a system
for data decompression of compressed data in a relational
database system, the system including: a database server
including: a microprocessor for controlling operation of the
database server; and a memory coupled to the microproces-
sor; the database server including a decompression module
resident in the memory for execution by the microprocessor,

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

the decompression module being configured to carry out the
decompression method described above.

DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a schematic diagram of a relational
database management system (RDBMS);

[0015] FIG. 2 is a schematic representation of a data pack
consisting of compressed column-data stored in a database;
[0016] FIG. 3 is a flowchart illustrating operations of a
method for generating data packs;

[0017] FIG. 4 is a schematic representation of a column
being encoded during the operations of FIG. 3;

[0018] FIG. 5 is a flowchart illustrating operations of a
method for decoding data packs;

[0019] FIG. 6A is a schematic diagram illustrating an
example of a HIST knowledge node;

[0020] FIG. 6B is a schematic diagram illustrating an
example of a CMAP knowledge node;

[0021] FIG. 7A is a diagrammatic representation of a
method of compression;

[0022] FIG. 7B is a flowchart illustrating operations of a
method for compressing data;

[0023] FIG. 7C is a flowchart illustrating operations of a
method for decompressing data;

[0024] FIG. 8 is a schematic diagram illustrating opera-
tions of a method for compressing data using a PartDict data
filter;

[0025] FIG. 9 is a schematic diagram illustrating opera-
tions of a method for decompressing data that was com-
pressed using the PartDict data filter of FIG. 8;

[0026] FIG. 10 is a schematic representation of data within
the RDBMS of FIG. 1;

[0027] FIG. 11 is a schematic representation of a tiered
data warehouse;

[0028] FIG. 12 is a schematic representation of a tiered
data warehouse system; and

[0029] FIG. 13 is a schematic diagram illustrating a com-
puting device that may be used to implement the methods
disclosed.

[0030] Throughout the Figures, like features arc identified
by like reference numerals.

DETAILED DESCRIPTION

[0031] The present disclosure provides a relational data-
base management system (RDBMS) in which analytical
information about data in a database may be used in query
planning and execution. The analytical information may be
determined from the data by mathematical techniques. Basic
analytical information about the data may be used to provide
advanced analytical information (i.e., higher level, more
organized information) about the data and relationships
within the data. Analytical information usually applied by
conventional databases to single data values may be applied
at the level of collections of values stored in data packs as
described below.

[0032] Using basic and advanced information about the
data, techniques such as rough set analysis (RSA) tech-
niques may be used in query planning and execution. RSA
techniques are mathematic techniques based on rough set
theory for providing statistical information about raw data.
RSA techniques apply mathematic analytical techniques to
identify relationships between data and provide approxima-
tion data (e.g., rough sets) that represent these relationships.

enabling INNOVATION

Mar. 20, 2008

RSA techniques may also be used to generate and optimize
the advanced information about the data to further improve
query execution. Rough set theory can provide a theoretical
basis for machine learning by which relationships may be
identified in raw data. Analytical techniques, such as various
RSA techniques, may be applied in the RDBMS.

[0033] The use of RSA techniques in query planning and
execution seeks to improve query response times and extend
query capabilities compared with traditional approaches to
database management systems (DBMS). Using basic and
advanced information about the data, RSA techniques allow
the amount of data that needs to be accessed to resolve a
database query to be minimized by first analyzing the basic
and/or advanced analytical information to determine if this
analytical information may be used, either entirely or in part,
to resolve the query without accessing the underlying data.
Further, when data needs to be accessed, the basic and/or
advanced analytical information may assist in determining
the optimal approach to retrieving the data necessary to
answer the query. Further still, the basic and/or advanced
analytical information about the data may provide useful
information in managing or organizing the database, and
may be used to extend standard functionality of the rela-
tional database management system by allowing “rough
queries” based solely on the basic and/or advanced analyti-
cal information about the data.

Relational Database Management System

[0034] FIG. 1 is a schematic diagram of a relational
database management system (RDBMS) 200. The example
RDBMS 200 is described with reference to functional
program modules for the purpose of illustration only, and is
not intended to be limiting. When implemented, one or more
of these functional modules may be combined into a single
program module or may include two or more sub-modules.
The RDBMS 200 may interface with a client application
(also referred to as a client) 202 providing a query tool
executed on a user terminal (not shown). The RDBMS 200
may be coupled to a database 201, which may be imple-
mented using SQL (Structured Query Language), and may
provide an interface, such as an SQL interface, to query tools
for use via the client application 202. The SQL interface may
manage the creation and management of database objects
like tables, views and user permissions to those tables.
Although only client application 202 is shown, multiple
client applications 202 may be connected to the RDBMS
200. The client application 202 may provide a user interface
(not shown) through which SQL requests and responses may
be sent and received between the client application 202 and
the RDBMS 200. The RDBMS 200 may include a Query
Parser 204, a Query Representation Optimizer 206, a Query
Optimizer 208 and a Query Execution Module 210.

[0035] The RDBMS 200 may also include functional
program modules such as: connectors, connection pool,
management services and utilities, caches and buffers, and
file system. The functionality of these program modules will
be understood by a person of ordinary skill in the art and so
will only be briefly described. The connectors may provide
various mechanisms/protocols for external tools to connect
to the database. The connection pool may manage multiple
clients connecting and making requests to the database. The
connection pool may manage the concurrency of many
requests competing for resources. The management services
and utilities are supporting tools that may be used with the

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

data to manage administration, settings, users, etc. The
caches and buffers are lower level services that may be
provided to all the system components which manage data
in memory (e.g., Random Access Memory (RAM)) for
query responses and optimizations among other functions.
The file system may manage the storage device.

[0036] The database 201 may include one or more data
packs (DP) 221 (see FIG. 4). In some aspects, the database
201 may be a column-oriented database 201, and the data
packs 221 may each represent column data from a base
table. The data packs 221 may include compressed data
representing the records or entries in the respective column.
The database 201 may be stored or partitioned on one or
more data storage devices (not shown) such as a hard disk
drive (HDD) or other suitable storage medium, which may
be a permanent (i.e., nonvolatile) storage medium. In some
aspects, the data packs 221 may contain data concerning up
to 65,536 consecutive records or records occupying up to 64
k of storage space, of which some values may be null.
Depending on the size of a column, it may be stored in more
than one data pack (e.g., if the column has more than 65,536
records or requires more than 64 k of storage space). The
data packs 221 may contain more or less records than
discussed here, depending on the application.

[0037] Basic analytical information about data in a data
pack 221 may be stored in a statistical data pack referred to
as a data pack node (DPN) 222 (see FIG. 4) associated with
each data pack 221 in the database 201. In some aspects,
there may be one DPN 222 for each data pack 221. The data
pack 221 and DPN 222 may be stored in the database 201
using a unique file name to uniquely identify the respective
data pack 221, with different extensions to identify and
locate the data pack 221 and DPN 222. Each DPN 222 nay
contain basic information (e.g., statistics) about its respec-
tive data pack 221. The particular information maintained in
the DPN 222 for each data pack 221 may depend on the
particular data type of the respective data pack 221. Typi-
cally, the size of each DPN 222 may be small and so the
DPN 222 may be not compressed. However, if the infor-
mation contained in the DPN 222 becomes more complex or
large, the DPN 222 may be compressed.

[0038] Generally, column data types may be at least one
of: a string, a numeric value, a floating point value, or a
binary value. A compression algorithm may be selected for
each of these four primary data types. In some aspects,
within each of these four primary data types there may be
sub-types (e.g., large string, short string, or other) for which
different compression algorithms may be selected. In some
aspects, all numeric values, floating point values, and binary
values may be stored as unsigned integers for the purpose of
compression. For example, a negative decimal number may
be converted to an unsigned integer, with certain indicators
to mark that it is a negative decimal number. This can be
reconstructed to recover the original number. By using only
unsigned integers for storage, implementation of compres-
sion may be simplified by avoiding the need for different
filters specific to a large number of data types. Of course,
certain data filters, for example PartDict, may be able to
process all data types. Data filters will be discussed in
greater detail further below.

[0039] In accordance with an embodiment, at least the
following SQL-compatible data types may be implemented
(the particular format of each data type may be varied):

enabling INNOVATION

Mar. 20, 2008

[0040] CHAR(x), VARCHAR(x)—String type (any char-
acters, incl. \0, length up to 32767)

[0041] INT—Numerical type, integer up to 32 bits

[0042] SMALLINT—Numerical type, integer up to 16
bits

[0043] BYTEINT—Numerical type, integer up to 8 bits

[0044] DEC(x, y)—Numerical type, fixed precision (up to
18 digits)

[0045] REAL, FLOAT—Floating point (64-bit)

[0046] DATE—Numerical

[0047] TIME—Numerical

[0048] TIME(n)—Numerical (HH:MM:SS.[n digits], up
to n=11)

[0049] DATETIME—Numerical, date and time (fraction

of sec. up to 6 digits)

[0050] BYTE(x), VARBYTE(x)—Binary, up to 32767
bytes
[0051] BIN—Binary, no encoding (BLOB), up to about 1

GB for single data pack
[0052] In this example, for the data types INT, SMALL-
INT, BYTEINT, DEC, REAL, DATE, TIME, and in the case
of lookup internal representations for the data types CHAR/
VARCHAR, the DPN 222 for data packs 221 may include:
the number of null and not null values in the respective data
pack 221, the minimum and maximum values in the respec-
tive data pack 221, and (he sum of values (this is applicable
to numerical data types only) in the respective data pack
221. If all non-null values in the data pack 221 are the same,
the DPN 222 may store only the statistical information and
positions of nulls. Additional or different information may
be included in the DPN 222 in other aspects. Further, other
information about the respective data pack 221 may be
derived from tile information in the DPN 222. For example,
the average value may be derived directly from the number
of non-values and the sum of values which are both stored
in the DPN 222 of the example.
[0053] For the data types BYTE, VARBYTE, BIN, and in
the case of non-lookups for the data types CHAR, VAR-
CHAR, the DPN 222 for data pack 221 may include: the
number of null and not null values in the respective data
pack 221.
[0054] The DPN 222 may be used in query planning and
execution, and may allow minimization of the need to access
the data stored in the respective data pack 221 during query
execution, as will be described in more detail below.
[0055] Knowledge nodes (KNs) or knowledge node
objects 224 may be also stored in the database 201 on the
same or different storage device (e.g., HDD) as the data
packs 221 and the DPNs 222. The KNs 224 are another type
of statistical data pack, and may be directly associated with
specific data packs 221 or DPNs 222. KNs 224 may include
advanced analytical information about the data stored in a
data pack 221 or across one or more data packs 221. The
KNs 224 are optional in that they provide more detailed
information about the data in the data packs 221 and
relationship between the data. There are several types of
KNs 224 that may be generated and stored, and new KNs
224 may be generated and added to the RDBMS 200 without
impact or without significant impact to the basic function-
ality of the RDBMS 200. The KNs 224 may be dynamic and
may change over time. KNs 224 provide information about
data packs 221 that may extend beyond that provided by the
DPN 222, such as information about relationships between
data in multiple data packs 221, information about relation-

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

ships between columns in a base table and/or relationships
between columns in different base tables. Example KNs 224
are described below. Typically, the size of each KN 224 may
be small and so KNs 224 may be not compressed, however
if the information contained in the KNs 224 becomes more
complex or large the KNs 224 may be compressed. Together,
the DPNs 222 and KNs 224 for the database 201 form a
knowledge grid (KG).

[0056] The database 201 may also have indices based on
the data packs 221 analogous to database indices based on
records. Most standard database indices may be adapted for
the RDBMS 200 to be based on the data packs 221 rather
than records.

[0057] The RDBMS 200 may further include a Knowl-
edge Grid (KG) Manager 220 and a Knowledge Grid (KG)
Optimizer 240. The Knowledge Grid Manager 220 is a
functional program module that may manage the DPNs 222
and KNs 224. The Knowledge Grid Manager 220 works
with the Query Optimizer 208 and Knowledge Grid Opti-
mizer 240. The Knowledge Grid Manager 220 may gener-
ate, modify and remove KNs 224 based on instructions from
the Knowledge Grid Optimizer 240. The Knowledge Grid
Manager 220 may also be responsible for informing the
Query Optimizer 208 about the available DPNs 222 and
KNs 224 and may load them into memory from storage (e.g.,
HDD) as necessary. When loaded into memory, the Query
Optimizer 208 may use information from the DPNs 222 and
KNs 224 to determine the optimum query execution plan.
Once loaded into memory the DPNs 222 and KNs 224 may
also be used in the execution of the query execution plan as
will be explained in more detail below.

[0058] The Knowledge Grid Optimizer 240 is a functional
program module that may be used to determine an optimum
set of KNs 224 based on query statistics 244 (which may be
obtained from the Query Parser 204) and data pack usage
statistics 242 obtained from the Knowledge Grid Manager
220. The query statistics 244 may allow the Knowledge Grid
Optimizer 240 to identify data ranges and types of informa-
tion about the data being queried. The query statistics 244
may be applied by the Knowledge Grid Optimizer 240 to
determine which KNs 224 are the most useful for query
execution. For example, the query statistics 244 maintain
information on how frequently particular pairs of tables are
joined, which may influence whether the corresponding
pack-to-pack KN 224 should be stored in the knowledge
grid.

[0059] Data pack usage statistics 242 may store informa-
tion about the frequency and/or kind of usage (e.g., relevant,
irrelevant, partially relevant) of data packs 221. Data pack
usage statistics 242 may influence compression/speed ratios
for particular data packs 221 and which data packs 221 are
loaded directly into memory. Data pack usage statistics 242
may also be used to vary the content of the DPNs 222 for
particular data packs 221. Data pack usage statistics 242
may be used to identify the respective data packs 221 of the
data being queried.

[0060] Using the query statistics 244 and the data pack
usage statistics 242, the Knowledge Grid Optimizer 240
may update the optimal set of KNs 224. If KNs 224 do not
exist over a desired data range, the Knowledge Grid Opti-
mizer 240 may determine that creation of one or more KNs
224 would improve query execution. In this case, the
Knowledge Grid Optimizer 240 may instruct the Knowledge
Grid Manager 220 to create one or more KNs 224 of a given

enabling INNOVATION

Mar. 20, 2008

type (e.g., create a histogram for a given data pack 221). If
KNs 224 exist over a desired data range (e.g., for a given
data pack 221) but, for example, the KNs 224 cannot be used
to answer the most frequent queries over this range, the
existing KNs 224 may be modified (e.g., histogram ranges
expanded) or new KNs 224 may be created (e.g., create a
Pack-Pack Join object) in order to provide sufficient statis-
tics to satisfy such queries. In this case, the Knowledge Grid
Optimizer 240 may instruct the Knowledge Grid Manager
220 to modify or create the relevant KNs 224. If KNs 224
exist, but the relevant data is infrequently or never queried,
and hence the relevant KN 224 is infrequently or never
queried, these KNs 224 may be deleted. In this case, the
Knowledge Grid Optimizer 240 may instruct the Knowledge
Grid Manager 220 to delete the relevant KNs 224. If such
data becomes accessed or queried more frequently in the
future, this may be detected by the Knowledge Grid Opti-
mizer 240, which may instruct the Knowledge Grid Man-
ager 220 to (re)create relevant KNs 224 if doing so will
improve query performance.

[0061] The Knowledge Grid Optimiizer 240 may use one
or more heuristic algorithms, including greedy, randomized,
Al-based, and/or evolutionary algorithms, to determine the
optimal set of KNs 224 to satisfy the most queries with the
least amount of access to the data in the data packs 221,
thereby minimizing the need to decompress the data packs
221 and load the raw data into memory. In one example, the
Knowledge Grid Optimizer 240 may identify the most
significant relationships within the data and then may deter-
mine an optimal set of KNs 224 to be maintained by the
RDBMS 200. The Knowledge Grid Optimizer 240 may then
instruct the Knowledge Grid Manager 220 to generate,
modify and/or remove KNs 224 in accordance with the
determined optimal set. Accordingly, the KNs 224 may be
dynamic and change over time in accordance with the query
statistics 244 and the data pack usage statistics 242. In
addition, because the KNs 224 may contain analytical infor-
mation about the data rather than actual data, the KNs 224
may be deleted or lost without compromising data integrity.
[0062] The Query Parser 204 may receive SQL queries,
sometimes referred to as requests or SQL statements, from
the client application 202. The Query Parser 204 parses or
separates the SQL query received from the client application
202 and converts it into an internal representation usable by
the RDBMS 200. The Query Parser 204 may forward this
internal representation to the Query Representation Opti-
mizer 206.

[0063] The Query Representation Optimizer 206 may per-
forn a syntactical optimization of the query. The Query
Representation Optimizer 206 replaces any references to
views with references to the underlying base tables and
reformats the query to attempt to make it easier to execute
based on the structure of the query request. The Query
Representation Optimizer 206 may forward this optimized
representation to the Query Optimizer 208.

[0064] The Query Optimizer 208 may optimize the query
for execution using analytical information from the DPNs
222 and KNs 224 relating to the underlying data (e.g.,
column, table, or view described in the original SQL query)
provided via the Knowledge Grid Manager 220, and from
intermediate query results obtained from the Query Execu-
tion Module 210 as will be described in more detail below.
The Query Optimizer 208 may prepare the query for execu-
tion by preparing a query execution plan. If intermediate

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

query results are obtained from the Query Execution Module
210, the Query Optimizer 208 may modify the initial query
execution plan based on these intermediate results. The
Query Optimizer 208 may forward the initial and any
modified query execution plans to the Query Execution
Module 210 for execution.

[0065] The Query Execution Module 210 may execute the
initial and any modified query execution plans provided by
the Query Optimizer 208. The Query Execution Module 210
may also be coupled to the Knowledge Grid Manager 220 so
as to provide access to the analytical information of the
DPNs 222 and KNs 224 for use in answering the query. The
Query Execution Module 210 may, if the query cannot be
resolved solely from the basic and/or advanced analytical
information in the DPNs 222 and/or KNs 224 respectively,
use retrieved data from storage (e.g., HDD) by decompress-
ing the relevant data packs 221 in the database 201 using a
Decompression Module 246. A file system (not shown) may
be responsible for storing and retrieving data from data
packs 221 in storage and compressing/decompressing the
data packs 221 as required.

[0066] The RDBMS 200 may further include import mod-
ule 248 and export module 250. The import module 248 may
be used to encode raw data from base tables obtained from
an external database or data source 203 into data packs 221.
The export module 250 may be used to decode data packs
221 into underlying base tables for exporting to the data
source 203. As part of the encoding/decoding operation, the
data in the data packs 221 may be compressed/decom-
pressed. Compression may be performed by the compres-
sion module 252 in the import module 248, and decompres-
sion may be performed by the decompression module 254 in
the export module 250. The compression and decompression
may use the filter cascade described below. The compression
process may use a compression algorithm selected to opti-
mize the compression ratio of a column, and may be selected
according to the data type of the respective column. Possible
compression algorithms encode the data and may use com-
mon coding methods known in the art including: arithmetic
coding, range coding, Shannon-Fano-Elias coding, Shannon
coding, Huffman coding, Rice coding, Golomb coding,
Tunstall coding, and prediction by partial matching (PPM).
Other codes or compression algorithms may be suitable.
DPN information about the column may be used to vary
parameters (for example, to apply or not apply various
parameters) of the selected compression algorithm. A
complementary decompression algorithm may be used when
the data packs 221 are decoded for export or query resolu-
tion when data about individual data packs is required. The
importing operation may optionally include creation of KNs
224, using the KN Creation Module 256 in the import
module 248. Compression and decompression of the data
will be discussed in greater detail below.

[0067] The database content and metadata may be stored
in several types of files: (1) column description files; (2) data
files; and (3) knowledge node description files.

[0068] The column description files contain a description
of the column which may include: its data type, DPN
information, and data pack localization. The data pack
localization information associates each column with a
respective data pack identifier (ID) such as a file name or
number and file offset in cases where each data file contains
more than one data pack. The session information may
enable identification of the sessions in which the given data

enabling INNOVATION

Mar. 20, 2008

pack was created or modified. The column description file
may be a relatively small file, typically several kB in the
present embodiment, which is loaded into memory when the
respective column is used for the first time. The column
description file is used to locate and decode data packs 221
by identifying the associated data pack 221 and data type so
as to identify the relevant decompression algorithm. In some
situations, the metadata which may include the column
description files from memory may be sufficient to deter-
mine the content of the data pack (e.g. nulls only, all values
identical) in which cases the data file may be empty.

[0069] The data files contain the compressed column data.
The data files may be stored with the column description file,
although they may be stored in a different location (e.g.,
different storage device, etc.). In some aspects, the data files
may be limited to 1.5 GB in size, or some other suitable size
depending on the application, to improve read times. Each
data file may contain data for two or more data packs 221,
where each data pack 221 in the data file occupies a
continuous space. The number of data packs 221 that may be
stored in one file varies depending on the size of each data
pack 221, which may be influenced by data type, number of
nulls, and compression ratio. When reading data from a data
pack 221, the file system may only need to decompress the
part of the data file associated with the relevant data pack
221. Advantageously, storing more than one data pack 221
in one data file may allow faster read times (e.g., lines for
decoding and loading of data pack data into memory for
access during query execution) than if each data pack 221
were stored separately. Additionally, storing larger collec-
tions of data packs 221 together in files may improve the
access speed. If each data pack 221 were stored in a separate
file, the access speed may be reduced.

[0070] The knowledge node description files store infor-
mation about the KNs 224. Fach KN description file
describes a separate KN 224, allowing individual KNs 224
to be created, modified, or removed by the Knowledge Grid
Manager 220 without affecting other objects, such as other
KN 224. This may improve the ability to manage (e.g., by
creation or deletion of KNs 224) the KNs 224 of the
database 201. The KN description files may be stored on the
same or different storage device (e.g., HDD) as the column
description files and data files. The KN description files are
loaded into memory on the first use of the KNs 224, however
the Knowledge Grid Manager 220 may load and remove
KNs 224 from memory in accordance with usage of such
KNs 224. The KN description files are not necessary for data
decoding, and may therefore be lost or restored at any time.
[0071] All of the data files may be subject to memory
management. Once the column metadata (e.g., column
description files), data pack (e.g., data file) 221 or KN (e.g.,
KN description file) 224 is loaded into memory, it may be
kept in memory as long as it is being used, and may be kept
by the memory manager for future use. When the available
memory becomes low, the less used objects may be removed
from memory, as managed by the Knowledge Grid Manager
220.

Query Example

[0072] FIG. 2 illustrates an example query using data
packs and analytical information in the DPNs 222. FIG. 2
represents data packs including compressed column-data

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

stored in the database 201. The following example query is
to be solved using the database 201:

[0073] SELECT COUNT(*) FROM . .. WHERE A>5;
[0074] For the purposes of this example, the data packs in
the database 201 can be separated into three categories:
BLACK data packs 260 are not relevant to the query; GREY
data packs 262 are partially relevant to the query, so they
need to be accessed to answer the query because some of the
elements of the data packs 262 may be relevant and some
other elements may be irrelevant; and WHITE data packs
264 are relevant to the query and do not need to be accessed
to answer the query because the answer can be determined
directly from the respective DPN 222.

[0075] The BLACK data packs 260 each have a maximum
value of less than 5 on A (e.g., some may have a maximum
of 4, others 3, and yet others 2 or 1). These data packs are
not relevant to answering the query because all of the data
in these data packs 260 falls outside the query, because the
maximum value of A of all records stored in the data packs
260 is 4 which is less than the query restriction of A >5. The
BLACK data packs 260 are said to be disjoint with the
query.

[0076] The WHITE data packs 264 each have a minimum
value greater than 5 on A (e.g., some may have a maximum
of 6, whereas others may be 7 or 10, etc.) on A. These data
packs 264 are relevant to answering the query because the
value of A for all records in these data packs 264 is greater
than or equal to 6 which is greater than the query restriction
of A >5. If the information in the DPNs 222 about the
WHITE data packs 264 indicates the number of records,
then this information can be summed to partially resolve the
query for the WHITE data packs 264. The GREY data packs
262 each have a minimum value of 3 and a maximum value
of 7 on A. These data packs 262 are also relevant to
answering the query because some of the records in these
data packs 262 have a value which is greater than 5 on A,
while some records in these data packs 262 have a value of
less than 5 on A. Thus, only the WHITE and GREY data
packs 264, 262 are relevant to answering the query. The
BLACK data packs 260 are not needed.

[0077] in the above example, information to answer the
COUNT(*) query can be obtained from information regard-
ing how many records from particular data packs satisfy the
filter A >5. Thus, for BLACK data packs 260 the answer is
automatically known to be zero. For WHITE data packs 264,
we know that all records inside should be counted. The
number of non-null values is stored in the DPN 222 for a
numeric data type so this number can be taken and summed
for all of the WHITE data packs 264. Only for the GREY
data packs 262 is the number of how many of the non-null
values that are actually greater than 5 not known using
information from the DPNs 222, and hence the GREY data
packs 262 need to be decompressed to get detailed infor-
mation about every single value in the GREY data packs
262. The above example is provided for the purpose of
illustration only, and is not intended to be limiting.

Data Pack Generation

[0078] FIGS. 3 and 4 illustrate operations 300 of a method
for generating data packs in accordance with an embodi-
ment. The operations 300 illustrate the generation of a single
data pack 221. If more than one data pack 221 is needed, for
example when a base table is being imported into the
RDBMS 200, then the operations 300 must be repeated until

enabling INNOVATION

Mar. 20, 2008

the entire base table has been encoded into data packs 221.
Although the particular compression algorithm may vary
between data packs 221, the same steps 302-320 will be
preformed for each column of the base table irrespective of
the applied compression algorithm. FIG. 4 shows a partial
column 402, its corresponding null mask 404, and a reduced
data set 406 generated by removing the null positions
indicated in the null mask 404 from the partial column 402.
[0079] Inthe first step 302, a column data from abase table
to be encoded is selected, for example, when raw data from
a base table is being imported into the RDBMS 200. Next,
in step 304 column data is obtained. In some aspects, each
data pack 221 may hold records for up to 64 k (65,536) of
storage space. Alternatively, each data pack 221 may hold
65,536 records. The data pack 221 may hold more or less
records than described here, depending on the application. If
the column contains less then 64 k of records, the column
may be padded with null values to create a total of 64 k
column, or the column may be left with less than 64 k of
records, as an incomplete column. If the column contains
more than 64 k of records, two or more data packs may need
to be generated in order to compress the entire column. In
other aspects, the data packs 221 may be able to handle more
than 64 k of records. Similar operations may be carried out
where each data pack 221 is designed to hold 65,536
records. While a value of 64 k is used in this example for the
size of each column, columns of any size may be used in
order to meet the requirements of a particular application.

[0080] Next, in step 306 basic analytical information for
the column data to be stored in the respective DPN 222 is
calculated. Optionally, prior to calculating the DPN infor-
mation the column data may be analyzed for outliers. If any
outliers are detected, they form part of the DPN information
stored in the DPNs 222. In addition, if any outliers are
detected they may be not considered in determination of the
other DPN information (e.g. null, non-null, maximum and
minimum where applicable, and sum where applicable).
Outliers are values which do not match the general pattern
or trend in a given column. Outliers may be, for example,
infrequently occurring symbolic values or extreme values.
In the example of FIG. 4, an outlier is the value 5000 which
is an extreme value compared to the other values in the
column set (i.e., 6, 7 and 8). Outliers may be detected using
heuristic methods including methods commonly known in
the art, which may be similar to those used in the Knowledge
Grid Optimizer 240 described above (e.g., greedy, random-
ized, Al-based, evolutionary etc.). If detected, the outliers
are stored in the DPN 222 and an outlier mask 408 which
tracks the positions of outliers to non-null values is stored in
the data pack 221.

[0081] Next, in step 308 a suitable compression algorithm
may be selected based on the data type of the column. In
some aspects, for each data type implemented in the
RDBMS 200 a compression algorithm is pre-selected. Next,
in step 310 a null (bit) map or null mask 404 (FIG. 4) is
generated. Next, in step 312 the null mask is compressed
using a compression algorithm suitable for binary sequences
since the null mask 404 is binary regardless of data type of
the reference column.

[0082] Next, in step 314 the null mask 404 is used to
remove null values from the column to generate a reduced
data set 406 consisting of only non-null values. The null
mask 404 provides a map of the null value positions and
non-null value positions so that null value positions may be

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

removed from the column. As will be described in more
detail below, the null mask 404 is stored in the data pack 221
for subsequent use in decompression.

[0083] Next, in step 316 the DPN information is used to
determine parameters of the selected compression algorithm
based on value patterns identified in the reduced data set
406. The Knowledge Grid Manager 220 also provides input
regarding whether the data in a given data pack 221 may be
more highly compressed, for example because it is not used
frequently, which may permit a high compression ratio to be
utilized at the expense of decompression speed, or when
decompression speed should be favoured at the expense of
compression ratio because the data in a data pack 221 is used
frequently. The DPN information may be used to tune the
parameters and optimize the compression ratio within every
single data pack 221 based on intrinsic patterns in the
reduced data set 406. Next, in step 318, the reduced data set
406 column data is compressed using the selected compres-
sion algorithm with the compression parameters determined
in step 316, thus creating a DP 221. Next, in step 320
compressed (non-null) column data, the compressed null
mask 410, outlier mask 408 (if any), compression param-
eters, and any intermediate results of the compression algo-
rithm (if any) are stored together in the data pack 221, and
a DPN 222 is stored in non-volatile memory (e.g., HDD).

[0084] The steps 302 to 320 are then repeated for the next
column, or next portion of the column, until all data in the
base table to be encoded and stored has been processed via
the operations 300.

[0085] FIG. 5 illustrates operations 500 of a method for
decoding data packs 221 in accordance with an embodiment.
Decoding operations 500 may occur, for example, during
execution of a database query in which access to data in the
data packs 221 is needed or during export operations in
which raw data from the RDBMS 200 is exported to the
external database/data source 203. In the first step 502, an
appropriate decompression algorithm is selected for the data
pack 221 to be decoded based on its data type as determined
from the column description file associated with the data
pack 221 and maintained by the RDBMS 200. Compression
parameters and any intermediate results of the compression
algorithm (if any) which are stored in the data pack 221 are
used by decompression algorithm, to decompress the data
pack 221.

[0086] Next, in step 504 the compressed data in the data
pack 221 is decompressed to produce a reduced data set 406
(FIG. 4). Next, in step 506 the null information stored in the
associated DPN 222 (i.e., the null mask 404) is applied to the
reduced data set in order to produce the original column
data.

[0087] Although the above description refers to compres-
sion and decompression involving filtering of the outliers
and null values, other filtering methods are possible, and
may be selected depending on the data. These other methods
will be discussed in greater detail.

Multi-column Encoding

[0088] In addition to encoding a single column, data packs
221 may be encoded based on functional dependencies
between columns within a base table or across base tables.
To accommodate multi-column compression, descriptions
of these functional dependencies may be stored instead of
the actual data for each column. For example, if it is
determined that whenever column A has value x, column B

enabling INNOVATION

Mar. 20, 2008

has value y, then the value of y does not need to be explicitly
stored. The value x in column A may be encoded into data
packs in accordance as described above along with a
description of the functional dependency between columns
A and B (ie. the relation x=y). This relation may occur
within the context of a single base table or between columns
in different base tables.

[0089] At the knowledge node level, if a multi-column
dependency is known, it can be used to minimize the number
of data packs 221 to be decompressed. For example, if the
values of column A are always greater than those of column
B, during the execution of a query with Filter A=5, then
internally the additional Filter B<5 may be generated by the
Query Optimizer 208 to be used against the DPN informa-
tion for the data packs 221 for the column B.

[0090] Techniques, including RSA techniques, and meth-
ods that may be common in the art (e.g., neural networks,
fuzzy logic, rough set reduct, statistical regression, etc.) may
be used to identify functional dependencies between data.
Alternatively, functional dependencies may be input from
existing database indices when data is imported into the
database 201. Optimization criteria for identifying func-
tional dependencies may also be modified to search for
inexact functional dependencies, such as where there are
exceptions to the relationship between the data or a trend/
pattern in the data (e.g., outliers as described above). In the
case of inexact functional dependencies, the description of
the relationship and any exceptions or special cases may be
stored in the data pack 221 along with the data of at least a
reference column in accordance with the operations 300
described above. For example, if x=y for columns A and B
respectively, except for 2 records, the exceptional records
(e.g., outliers) may be stored along with the relation x=y in
the respective data pack 221.

[0091] Thus, a mathematical dependency model may be
generated based on one or more functional dependencies
describing an inexact functional relationship between data in
columns A and B that allows, with the input of values of
some subset of data in column A, the output of approxima-
tions of the actual values of the corresponding subset of data
in column B. This dependency model may then be modified
to optimize the compression ratio of data of column A to be
compressed during encoding operations using the particular
compression algorithm applied for a particular data type,
provided that the resulting approximation of the actual data
of column B is within the specified tolerance for the given
application. The above examples are for illustration pur-
poses only, and are not intended to be limiting.

Knowledge Nodes (KNs)

[0092] Some KNs 224 will now be described. Other KNs
224 are also possible. The KNs 224 described below are
provided for the purpose of illustration only and are not
intended to be limiting. In general, KNs 224 can provide
statistical and relational data between columns in the data-
base 201 or among data packs 221 in a single column.

Value-pack Histogram (HIST)

[0093] The scope of the HIST object or HIST knowledge
node may be a single numerical column. The HIST object
contains binary information about the existence of a given
value, or any value from a given interval, in the respective
data pack 221. The HIST object is used, for example, to

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

refine condition checking (e.g., exclusion of a data pack 221
when it is known that a specific value is not present within
that data pack 221) and joining (e.g., exclusion of pairs of
data packs 221 when their histograms are disjoint).

[0094] The HIST object stores binary information about
whether the data pack 221 has any data elements with values
in a given interval. The default number of intervals may be
1024, excluding minimum and maximum values, or it may
be some other number. The intervals may be fixed-sized
intervals, depending on minimum and maximum values in a
pack. Alternately, the intervals may be of variable size, such
as with smaller intervals where the values have a higher
distribution and larger intervals where the distribution is
lower, for example where the values have a bi-modal dis-
tribution. The interval sizes may also be variable depending
on what range of values have a higher frequency of queries.
If the difference between the minimum and maximum values
is less than the default or selected number of intervals, and
the column is fixed-size (e.g., integer or decimal), then exact
data values may be used as the intervals.

[0095] The HIST object may implement a function called
IsValue(vl, v2) where v1 and v2 are two numerical values
defining an interval. The result of the function may be one
of three values: RS_NONE if none of the entries in a data
pack have a value within the interval defined by v1 and v2;
RS_SOME if some of the entries in a data pack have a value
within the interval defined by v1 and v2; and RS_ALL. if all
of the entries in a data pack have a value within the interval
defined by v1 and v2.

[0096] One example of this knowledge node is illustrated
in FIG. 6A. In this example, data elements 602 have a
minimum value of 1 and a maximum value of 9. Since the
difference between the minimum and maximum values is
less than the default resolution of 1024, the exact values are
stored. The HIST object 604 uses binary values to indicate
the presence of certain values (i.e., 1, 2, 3, 5, 6 and 9) with
a 1 bit. In this example, IsValue(l, 4) would return
RS_SOME. IsValue(7, 8) would return RS_NONE, and
IsValue(1, 9) would return RS_ALL.

Pack-Pack Join (JPP)

[0097] The scope of the JPP object may be any two
columns from different base tables. The JPP object contains
binary information about whether a given pair of data packs
221 containing column data from different base tables has
any common value, except nulls. Tile JPP object may be
used, for example, as an additional criterion while joining to
exclude pairs of data packs 221 which are not joinable.
[0098] The JPP object may implement a function called
GetValue (p1, p2) where p1 and p2 refer to two data packs
221. The result of the function may be a Boolean: True
where data packs pl and p2 may have non-empty intersec-
tion, and False where data packs p1 and p2 have no common
values.

Character Map (CMAP)

[0099] The scope of the CMAP may be a single text
column. The CMAP object is a binary map indicating
existence of any character at any position. For example, for
every position is (which may be limited to up to 64 char-
acters) a binary string of 256 bits (32 bytes) is prepared. The
size of the binary string may be different, depending on the
application. A value ‘1’on character i means that there is at

enabling INNOVATION

Mar. 20, 2008

least one record in the data pack 221 for which there exists
character i on position n. Characters at positions starting
from 65 may be ignored, although the number of positions
considered may be greater or smaller, or there may be no
limit. The CM AP object may be larger than the HIST object
for numerical values, but may be used for many optimiza-
tions, serving as statistics for sorter definitions and provid-
ing quick answers for sonic queries with LIKE and other text
predicates.

[0100] The CMAP object may implement a function
called IsValue(v1l, v2) where v1 and v2 are two string values
defining an interval. The result of the function may be one
of three values: RS_NONE if none of the entries in a data
pack have a value within the interval defined by v1 and v2;
RS_SOME if some of the entries in a data pack 221 have a
value within the interval defined by v1 and v2, and RS_ALL
if all of the entries in a data pack 221 have a value within the
interval defined by v1 and v2.

[0101] The CMAP object may also implement a function
called IsLike (string) where string is a string instance that
CMAP looks for in the column. The result of the function
may be one of three values: RS_NONE if none of the entries
in a data pack 221 matches the pattern; RS_SOME if some
of the entries in a data pack 221 match the pattern; and
RS_ALL if all of the entries in a data pack 221 match the
pattern.

[0102] The CMAP object may also implement functions
called GetMin (pack) and GetMax (pack) where pack is a
data pack 221 in the database 201. The result of these
functions may be a string composed of the minimum or
maximum characters of the histogram at every position in
the data pack 221 for the GetMin (pack) and GetMax (pack)
functions respectively.

[0103] One example of this knowledge node is illustrated
in FIG. 6B, where data elements 606 result in CMAP object
608. In this example, CMAP object 608 may be case-
insensitive, meaning that CMAP object 608 will indicate the
presence of a certain character with a 1 bit regardless of
whether it is uppercase or lowercase. Hence, the element
“Banana” results in a 1 bit indicator for “B” at position 1 and
for “A” at positions 2 and 4. In other implementations,
CMAP object 608 may be case sensitive, may include
special symbols, and/or may include numerical data. While
tie CMAP object 606 is only shown with letters A-I and
positions 1-4, any combination of alphanumeric characters,
typically all letters of the alphabet, may be included, and any
number of character positions may be included.

Examples of use of Knowledge Nodes

[0104] Examples illustrating the use of KNs 224 will now
be described. These examples are provided for the purpose
of illustration only and are not intended to be limiting.
Assume there are two base tables, table T and table X. Table
T includes columns A, B and C (there may be more in table
T, but they are not relevant to the example). Columns A and
C contain numeric data. Column B contains string data.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

Each of columns A, B and C in table T is represented by 5
data packs for every column as illustrated below:

TABLE T

Column A Column B Column C

(numeric) (string) (numeric)
Data pack 1 Data pack 1 Data pack 1
Data pack 2 Data pack 2 Data pack 2
Data pack 3 Data pack 3 Data pack 3
Data pack 4 Data pack 4 Data pack 4
Data pack 5 Data pack 5 Data pack 5

[0105] Table X includes columns D and E. Columns D and
E contain numeric data. Each of columns D and E in table
X are represented by 3 data packs for every column as
illustrated below:

TABLE X
Column D Column E
(numeric) (numeric)
Data pack 1 Data pack 1
Data pack 2 Data pack 2
Data pack 3 Data pack 3

Character Map (CMAP)

[0106] Consider the following query:
[0107] SELECT MAX(A) FROM T WHERE B=‘good’;

[0108] Assume that the data pack 1 for column A has a
MAX=5, data pack 2 for column A has a MAX=2, data pack
3 for column A has a MAX=8, data pack 4 for column A has
a MAX=5, and data pack 5 for column A has a MAX=10.
For every data pack for column B, the function IsLike
(‘good’) is executed. Assume the following results: data
pack 1 for column B has a result=RS_ALL, data pack 2 for
column B has a result=RS_SOME, data pack 3 for column
B has a result=RS_NONE, data pack 4 for column B has a
result=RS_NONE, and data pack 5 for column B has a
result=RS_SOME.

[0109] Combining the above information about A and B
indicates the following:

[0110] Data pack 1 for column A has MAX=5, so no
decompression is needed because all data relevant (all
data records in data pack 1 for column match).

[0111] Data pack 2 for column A has a MAX=2, so these
records are ignored irrespective of the data in column
B since we already know that MAX(A) will be at least
5 because of results from the data pack 1 on A. Hence
no decompression is needed.

[0112] Data packs 3 and 4 for column A are not relevant,
because these were excluded by the filter on column B
since there was no match on column B.

[0113] Data pack 5 for column A and B requires decom-
pression because the number of relevant values (all/
none) cannot be determined. For A some records have
A>5, and for B some of the records match, but it cannot
be said whether there is a match where A>5, and if so
the MAX(A) cannot be determined.

[0114] Thus, the final result of the query will be the
maximum of 5 (from data pack 1 on column A) and the result

enabling INNOVATION

Mar. 20, 2008

of the analysis of data pack 5 (i.e., the maximum value
subject to the filter B="good’ for single records in the data
pack).

Pack-Pack Join (PPJ) and Value-Pack Histogram (HIST)

[0115] Consider the following query:
[0116] SELECT MAX(T.A) FROM T JOIN X ON
T.C-X.D
[0117] WHERE T.B+‘good’ AND X.E<5;
[0118] The filter B="good’ may be applied in table T in the
same manner as in the previous example. Hence, only data
packs 1, 2 and 5 from table T are going to participate in the
calculations. Now for every data pack for column E in table
X we apply the HIST object’s function IsValue(5, n) where
n equals the maximum value for column E in table X (which
is determined from column E’s DPNs 222). Assume the
following results:
[0119] Data pack 1 for column E has a result of
RS_SOME,
[0120] Data pack 2 for column E has a result of
RS_ALL, and
[0121] Data pack 3 for column E has a result of
RS_NONE.
[0122] Therefore, data pack 3 for column E can be ignored
in further calculations as none of the records are relevant.
Going further to the JOIN operation, we know that the data
packs to be involved are data pack 1, 2 and 5 for column C
in table T, as well as data packs 1 and 2 for column D in table
X. Consider that JPP for T.C and X.D is given and it results
as follows for function GetValue (C’s data pack from table
T, D’s data pack from table X):

[0123] Data pack 1 on column C and data pack 1 on D
is false,

[0124] Data pack 1 on column C and data pack 2 on D
is false,

[0125] Data pack 2 on column C and data pack 1 on D
is true,

[0126] Data pack 2 on column C and data pack 2 on D
is false,

[0127] Data pack 5 on column C and data pack 1 on D

is true, and
[0128] Data pack 5 on column C and data pack 2 on D

is false.
[0129] Thus, the results narrow down the column C’s data
packs which are going to participate in the calculation of
MAX(T.A) to data packs 2 and 5 because the elements of
data pack 1 are not going to occur in a joined table (neither
with elements of data packs 1 nor 2 for D). Hence, data
packs 2 and 5 for column A are decompressed and the
maximum is calculated subject to the filter B="good’ in table
T.

Compression Algorithms

[0130] The compression of column data within data packs
221, as opposed to compressing entire columns, may yield
higher compression ratios than if an entire column where
compressed because of the ability to identify relationships or
redundancies within each data pack 221 that may not exist
over the entire column, thereby providing a basis for a
potential higher compression ratio within the data pack 221.
[0131] To compress a sequence of data elements, relation-
ships or redundancies are found between the elements. There

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

may be many possible relations, applicable to numeric
values, alphanumeric values, or both, non-limiting examples
of which are as follows:

[0132] 1. All numbers fall into the same range [min,
max|;
[0133] 2. Some values may appear frequently in the

sequence (frequent values);

[0134] 3. A group of bits (usually the highest, some-
times the lowest) may be similar in all elements of the
sequence or may have highly non-uniform distribution;

[0135] 4. A group of bits at a given position in each
element may have highly non-uniform distribution;

[0136] 5. Repetitions may occur frequently;
[0137] 6. Neighbouring elements may be correlated;
[0138] 7. All elements may be divisible by the same

value>=2; and

[0139] 8. A few elements may take very different values
than the rest.

Filter Cascade

[0140] These relations/redundancies are utilized in filter-
ing and compressing the data using a series of compression
filter stages in a filter cascade, as illustrated in FIG. 7A, in
which the compression filter stages 703a-» are arranged, for
example, with the output of one compression filter stage
(e.g., 703qa) providing the input to a subsequent compression
filter stage (e.g., 703b). The filter cascade may be provided
with an uncompressed data input 701. Each compression
filter stage 703a-n applies a data filter 702a-» and a com-
pression block 704a-n. Each data filter 702a-7 in the series
may. be designed to detect and filter out a different type of
relationship/redundancy in the data. At each data filter
702a-n, a description of the relationship/redundancy may be
sent as reconstruction data to be encoded by the compression
block 704a-n using a standard compression algorithm and
filtered from the data. The compression algorithm may be
different for each compression filter stage 70a-n, and may
have different parameters, depending on the data filter
702a-nr and/or the input data. Commonly used compression
algorithms apply arithmetic or range coding. Other suitable
codes include Shannon-Fano-Elias code, Shannon code,
Huffman code, Rice code, Golomb code, Tunstall code, and
prediction by partial matching (PPM). The output of the
compression block 704a-n is then sent to the filter stream
708. The filter stream 708 may include the output of each
compression block 704a-r appended together. The filtered
data of compression filter stage 703a forms the filter output
706a of that compression filter stage 703a and may be sent
as the input of the next compression filter stage 7035. This
may be repeated for each compression filter stage 703a-% in
the series.

[0141] In some aspects, at the end of the filter cascade, the
final compression filter stage 7037 sends all of its data input
to the compression block 703, so that it has no filter output.
Thus, at the end of the filter cascade, all the data may be
compressed and represented in the filter stream 708. Typi-
cally, the last compression filter stage 703% in the filter
cascade may assume its input data has uniform distribution
and may compress all of its input data. The filter stream 708
may have an uncompressed information header at the start of
the compressed data, which stores information (e.g., in the
form of binary flags) indicating which compression filter
stages 703a-n were applied during compression. In some

enabling INNOVATION

Mar. 20, 2008

aspects, this information header may be stored in the column
description file described above.

[0142] Insome aspects, during decompression, two passes
through the filter cascade may be used. The first pass is from
the beginning to the end, in the same order as during
compression, to load the encoded descriptions of each
compression filter stage 703a-r from the filter stream 708.
The second pass is in the reverse order to reconstruct the
original data from the filter stream 708. Each data filter
702a-rn may have its own reconstruction and/or decompres-
sion algorithm. Alternatively, the information header may be
designed to eliminate the need for the first pass of the two
passes described above.

[0143] Reference is next made to FIG. 7B which illus-
trates processing of data by the filter cascade for compres-
sion, and FIG. 7C which illustrates processing of data by the
filter cascade for decompression.

[0144] For compression (FIG. 7B), at step 710 the data
may be introduced to the filter cascade.

[0145] The next compression filter stage in the cascade
(i.e., the first compression filter stage in the case where the
data is first introduced) may be considered for effectiveness
at a step 712. In considering the compression filter stage, it
may be evaluated to determine whether using the data filter
of that filter stage improves the compression of the data.
Each filter stage may have its own method of evaluation that
evaluates or predicts the effectiveness of applying the data
filter. This will be discussed in greater detail further below,
with reference to some data filters. At a step 714 if the data
filter is found to provide acceptable or improved compres-
sion, then the compression filter stage may be selected to be
used and the process proceeds to a step 716. If not, the
compression filter stage may be not selected for use and the
process may return to step 712. What constitutes acceptable
compression resulting in use of a particular filter stare may
be fully configurable depending on the design criteria of a
particular application.

[0146] At the step 716, the data filter is applied to the data.
Reconstruction information, which may include the relation-
ship/redundancies filtered out from the data, may be sent to
the compression block. While the step 716 may be only
arrived at if the data filter evaluated at the step 714 is
considered to provide a certain level of compression, in
some aspects steps 716-720 will always be executed for the
last compression filter stage, as described above with refer-
ence to FIG. 7A.

[0147] At a step 718, the reconstruction information is
compressed by the compression block of the filter stage, and
the compressed reconstruction information may be provided
to the filter stream. The remaining filtered data may be
provided as the filter output. The reconstruction information
may include information on how to reconstruct the input
data from the filtered data.

[0148] At a step 720, if there is a subsequent compression
filter stage to be evaluated or considered for use in the filter
cascade, then the filter output may be sent as the input data
for the next compression filter stage and the process returns
to step 710. If there are no more filters, the process ends. At
the end of the filter cascade, all the original data may be
compressed in the filter stream and the filter output may be
empty.

[0149] If there is a subsequent filter stage, but the filter
output is already empty, the subsequent filter stage may be
not used and the process may end. This may occur where the

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

data is redundant enough that removal of certain redundan-
cies filters all the data for inclusion in the filter stream, for
example, in data where all elements have a high frequency
of occurrence. Indication that the subsequent filter stage was
not used may be added to the filter stream or to the header
data, so that the data can be properly reconstructed during
decompression.

[0150] FIG. 7C illustrates an operation for decompression
of compressed data. At a step 740, the filter input may be
initialized to empty.

[0151] Next, at a step 742, the filter input may be provided
to the filter cascade. At the start of the decompression
process, the filter input may be typically empty. In some
aspects, the filter input may be initialized to contain some
data, for example where some of the data was already
decompressed or was not compressed. Next, at a step 744,
the filter cascade is applied in the reverse order to the order
described above for compression. In some aspects, the order
in which compression took place may be pre-set and known.
If the compression order is not known, this information may
be provided in an uncompressed header block associated
with the compressed data. The compression order may also
be provided in an information header (e.g. a column descrip-
tion file) associated with the compressed data file.

[0152] In some aspects, there may be a preliminary step
(not shown) in which the compressed data may be processed
by the filter cascade in the same order as during compres-
sion. This preliminary step allows extraction of data recon-
struction information, such as identification of which filter
stages were applied, for each filter stage from the filter
stream. This preliminary step may also partition the filter
stream into blocks of compressed data generated by separate
compression filter stages.

[0153] Next, at a step 746, the filter stream may be read by
the filter stage and the reconstruction information may be
extracted. The reconstruction information may be decom-
pressed by applying a corresponding decoding algorithm
according to the compression algorithm used. The recon-
struction information may be relevant only to the particular
filter stage being considered, or it may contain information
for other filter stages in the cascade, in which case only the
relevant information may be considered.

[0154] Next, at a step 748, the reconstruction information
is used to reconstruct the data from the filter stream. The
method of reconstruction may be unique to each filter stage.
If the filter stream has passed through the entire filter
cascade in reverse as appropriate, the data may now be fully
reconstructed. Otherwise, the data may be only partially
reconstructed. The fully or partially reconstructed data may
be written to the output of the filter cascade.

[0155] Next, at a step 750, if there is another filter stage in
the reverse cascade, the process proceeds to a step 752
where the output (e.g., the partially reconstructed data) of
the previous filter stave may be provided as the filter input
for the next filter stage. The process then returns to the step
742 to move to the next filter stage. If there are no more filter
stages in the reverse cascade, the output may now consist of
the fully reconstructed data and the process ends. In the case
where the compressed data is fully recoverable, the output
consists of fully reconstructed data that may be identical to
the original uncompressed data.

[0156] The filter cascade may be flexible in that it may
separate different types of redundancies which simplifies
filter design and implementation, may allow easy switching

enabling INNOVATION

Mar. 20, 2008

on/off of some of the filter stages, and may allow the same
type of filter stage to be used several times in the series. In
some aspects, the order in which the filter stages are applied
may be varied, and may be dynamically varied. Some
examples of the types of the data filters that may be used are
described below. These examples are for the purpose of
illustration only, and arc not intended to be limiting. Some
data filters may be used with numeric data only, alphanu-
meric data only, or both:

[0157] 1. Min: subtracts the minimum of all data elements
from each element of the data, thus reducing the range of the
data; the value of the minimum is compressed and sent to the
filter stream. To reconstruct the data, the minimum value is
decompressed and added onto each element.

[0158] Inevaluating whether to use this filter, typically the
Min filter may be applied if it reduces the range of the data
elements. In general, this means that if the data elements
have a non-zero, preferably positive minimum value, the
Min filter may be applied.

[0159] 2. GCD: determines the Greatest Common Divisor
(GCD) of all data elements, and divides each element by the
GCD; the value of the GCD is compressed and sent to the
filter stream. To reconstruct the data, each element is mul-
tiplied by the GCD.

[0160] Typically, the GCD filter may be applied if a GCD
exists. In general, this means that if the data elements have
a GCD greater than 1, the GCD filter may be applied.
[0161] 3. Diff: calculates a differenced sequence consist-
ing of differences between pairs of subsequent elements (i.e.,
between element n and element n+1), and sends the differ-
enced sequence to the next stage of compression. In some
aspects, the first element in the sequence is unchanged.
Values of differences may be taken modulo (max_value+1),
where max_value is the maximum value of all data ele-
ments. The result is that any difference that is less than zero
will have max_value added to it, so they fall into the same
range as the original values, while data reconstruction is still
possible. The max_value is compressed and sent to the filter
stream.

[0162] Reconstruction of data filtered through the Diff
filter may be done as follows: the first element is unchanged,
so it is taken as-is; the second element is reconstructed by
adding the second element of the difference sequence to the
first element; the third element is reconstructed by adding
the third element of the difference sequence to the recon-
structed second element, and so on through the entire
difference sequence. If modulo was applied to the difference
sequence, this also should be reversed in order to recover the
data exactly. To do this, the max_value is decompressed
from the filter stream. Then any reconstructed element that
has a value greater than max_value will have max_value
subtracted from that element.

[0163] Determination of whether the Diff filter may be
applied may be typically based on calculations of the
entropy of the data with and without applying the filter. The
differences of the data are calculated and the entropy of the
differenced data is compared to the entropy of the original
data. If the entropy of the differenced data is smaller, then
the Diff filter may be applied. In order to speed up calcu-
lations, in some aspects, this determination may be based
only on a sample of the data. For example, only 5% of the
data may be differenced and used for entropy comparison. In
some aspects, the entropy may be calculated using only
certain bits of the data, for example the top 8 and bottom 8

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

bits separately. When only 8 bits are considered, only 256
different values may occur, which results in entropy calcu-
lations that are easier and more reliable. If all values in the
data are shorter than 16 bits, the number of bottom bits
considered may be appropriately decreased. If all values in
the data are shorter than 8 bits, only the 8 top bits may be
used to calculate entropy.

[0164] 4. PartDict: builds a partial dictionary of values
occurring in the sequence and uses it to compress the data
with a standard encoding algorithm, such as range coding
(RC). The frequency of each value in the dictionary may be
also stored to calculate probabilities for compression. The
dictionary is referred to as partial because only frequent
values are stored, meaning values having a number of
occurrences above a certain constant threshold, which may
be pre-determined. If a rare or non-frequent value occurs in
the sequence during encoding, a special escape symbol is
encoded and the rare value is left in the sequence, forming
the filter output for input to the next filter in the filter
cascade. Frequent values are removed from the data after
encoding. Before encoding of the data, the dictionary is
compressed sent to the filter stream. The encoded sequence
of frequent values is also sent to the filter stream.

[0165] Typically, determination of whether to apply the
PartDict filter may be based on a comparison of the com-
pressed data size after applying both the PartDict filter and
the Uniform filter (discussed below) and the compressed
data size after applying the Uniform filter alone. It may be
possible to predict the compressed data sizes for both cases
without actually carrying out the compression using math-
ematical techniques common in information theory, such as
by estimating the average code length (i.e., the size of each
compressed element) based on the entropy of the corre-
sponding probability distributions of symbols. If the pre-
dicted compressed data size after applying both the PartDict
and the Uniform filters is smaller than after applying the
Uniform filter alone, then the PartDict filter may be applied.
[0166] An example of compression using PartDict is
shown in FIG. 8. Input data 802 contains elements with
certain frequencies of occurrence. In this example, an ele-
ment is considered to have a high frequency of occurrence
if it occurs at least twice. Thus, frequent values are 2, 3 and
5; rare values are 1, 4 and 6. The frequent values are placed
in a dictionary 804 with their associated frequencies of
occurrence. Rare values 812 are assigned the symbol ESC.
The frequent values are removed from the input data 802 and
placed in a frequent value sequence 806 along with ESC
where the rare values 812 should occur. The probability
distribution stored in the dictionary 804 is used to encode the
frequent value sequence 806 using a standard coder 808,
applying an encoding algorithm, such as RC or arithmetic
coding (AC). The dictionary 804 and the coded frequent
value sequence are included in the filter stream 810. The rare
values 812 form the filter output 814.

[0167] FIG. 9 shows the decompression of this example.
The dictionary is decompressed from the filter stream 810.
The probability distribution from the dictionary 804 is used
with the coder 808 to decode and recover the decoded
frequent value sequence 816. The rare values 812 are
provided from the output of the previous filter in the
decompression process. The ESC symbols are replaced with
the rare values 812 to recover the reconstructed input data
818. This example is for the purpose of illustration only and
is not intended to be limiting.

enabling INNOVATION

Mar. 20, 2008

[0168] 5. TopBitDict: builds a full dictionary of a group of
the top bits of all elements of the data. The dictionary also
stores frequencies of occurrence of each group of top bits.
The dictionary is compressed and sent to the filter stream.
The top bits of each element of the data are compressed by
encoding with a standard compression algorithm such as
RC, using the probability distribution represented by the
dictionary. The encoded sequence of top bits is sent to the
filter stream. The lower bits of the elements are left in the
sequence, forming the filter output, and passed to the next
stage. The number of top bits used for encoding may be
chosen so as to minimize the predicted length of the com-
pressed data. Decompression is similar to that of PartDict.
Evaluation of whether to apply the TopBitDict filter may be
done using predicted compressed data size, similar to the
technique for the PartDict filter.

[0169] 6. LowBitDict: similar to TopBitDict, for the low-
est bits of each element.

[0170] 7. Outliers: considers the values of the elements
rather than their frequencies of occurrence. First, outliers are
detected in the data sequence by finding a small number of
elements which have much larger or much smaller values
than certain statistics (which may be dependent on the data
type) calculated for the rest of the elements. The threshold
for determining what is considered an outlier may be pre-
determined or it may be dynamically selected, depending on
the data. In some cases, the number of values that may be
considered outliers may be pre-determined. Then, the out-
liers are removed from the data sequence. The positions and
values of the outliers are compressed and sent to the filter
stream. The data sequence with the outliers removed forms
the filter output. Reconstruction of the data may be done by
decompressing the values of the outliers and their position
information and merging this information with the sequence
of non-outliers.

[0171] Typically, determination of whether to apply the
Outliers filter may be done using predicted compressed data
size, similar to the technique for the PartDict filter. In some
aspects, entropy calculations may be performed to predict or
to evaluate the optimum number of values that maybe
considered outliers.

[0172] 8. Uniform: assumes uniform distribution of the
data in the range of [0, max_value] and compresses all
elements of the data by encoding with a standard encoding
algorithm, such as RC. The filter output may be typically
empty, and this filter typically may be the last filter in the
filter cascade for compression.

[0173] Inaddition to the data filters described above, there
may also be a mechanism for detection of repetitions of the
same record. Before compression of the next record, it may
be checked whether it is the same as the previous record. If
so, it may be given a certain encoding, e.g., bit ‘1°. Other-
wise, bit ‘0’ may be encoded. Use of this mechanism may
improve the compression ratio and speed by 8%.

[0174] Compression filter stages containing the above-
described data filters may be applied according to the
ordering listed above, or the ordering may be dynamically
rearranged and some of the filter stages may be repeated
based on the intermediate results of the output from preced-
ing filter stages. Before applying a filter stage a check may
be optionally preformed to determine if the filter stage
should be applied. This check uses the intermediate results
to determine whether for efficiency purposes the filter stage
should be applied, (e.g., if the associated relationship/redun-

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

dancy considered by the filter stage exists and if the appli-
cation of the filter would result in compression gains suffi-
cient to warrant the application of the filter, given the
associated performance costs of compression and decom-
pression).

Compression of NULL Masks and Binary Columns

[0175] The occurrences of 0 and 1 in the data column are
counted to calculate probabilities of 0 and 1 which are then
passed to a standard compression algorithm, such as Arith-
metic Coding (AC), which can yield a compression ratio of
2.6 to 1 on average. In some data packs there may be
correlations between neighbouring bits. To utilize this fact,
the sequence may be differenced. Entropy, a well-known
measure applied to probabilities, may be calculated for the
differenced sequence. If the entropy of the differenced
sequence is lower than the entropy of the original sequence,
the differenced sequence may be encoded instead of the
original sequence. This is similar to the Diff filter. Then,
during decoding, the reverse operation may be performed.
This modification may give an average compression ratio of
35t0 1.

String Compression

[0176] Strings may be also compressed using a compres-
sion algorithm selected for the string data type. As in the
case of numeric and binary data, the sequence of string
values taken from a given data pack (e.g., for a database
column keeping alphanumeric data) is first cleaned of
NULLSs and is then put through the filter cascade, as shown
in FIG. 7A. The output from each applied filter stage may
take the form of a sequence of string values. The general
scheme of the filter cascade while compressing and decom-
pressing data may remain the same as before.

[0177] The list of available filter stages for sequences of
string values remains open, as in the cases of other data
types. An example of a filter which is applicable to string
values is PartDict. The work of PartDict, both during com-
pression and decompression of a sequence of string values
may be similar to the case of numeric values. In some
aspects, strings may be compressed using an algorithm
based on Prediction by Partial Matching (PPM), which is
commonly used for text compression. PPM is an adaptive
technique. PPM attempts to predict the next symbol in a
string on the basis of the preceding symbols (i.e., the
context). PPM is discussed in detail in, for example, “Data
Compression” by David Salomon, 3rd edition, Springer-
Verlag, 2004, Chapter 2.18; and in “Introduction to Data
Compression” by Khalid Sayood, 3rd edition, Morgan-
Kaufmann, 2005, Chapter 6.3, which are incorporated herein
by reference in their entirety. PPM compresses strings using
a probability distribution for each symbol in a string based
on the preceding symbols. This probability distribution may
be updated continuously as more symbols are encountered in
the string. PPM may be used to compress strings using a
dictionary containing the probability distribution of each
symbol.

[0178] Some implementations of PPM attempt to predict
the next symbol using all preceding symbols as the context,
while other implementations use a fixed length context. If
this prediction is not possible, the context may be reduced by
removing a preceding symbol from the context. This may be
repeated until a prediction can be made, or until there are no

enabling INNOVATION

Mar. 20, 2008

more symbols in the context. When no symbols remain in
the context, a fixed prediction may be made, which may be
based on an assumption of uniform distribution of all
possible symbols. When a never-before seen symbol is
encountered, an escape symbol may be used and a prede-
termined probability may be assigned to the new symbol.
[0179] Simply using PPM alone may be cumbersome
because of the large amount of memory required to store the
context, especially in the case where all preceding symbols
are used as the context. In such an implementation, search-
ing for a given context in an encoded part of the string would
give O(n*) complexity. Instead, a trie or suffix tree data
structure may be used to represent the string. These data
structures store the symbols in branching nodes in tree form.
These data structures permit faster context searching
through the use of pointers back to earlier nodes, such
pointers being known as suffix links. Use of a trie or a suffix
tree for implementation of PPM is known in the art, and
variations are possible. The probability distribution for use
in PPM may also be stored in the data structure, for example
as weights on the nodes of a tree. This probability distribu-
tion may be continuously updated as the symbols are pro-
cessed.

[0180] PPM has been used to compress a large portion of
text, such as an entire text file. To use PPM for compression
of a sequence of short strings, there are several approaches.
PPM may be used to compress each string separately,
however this method may not be able to exploit any simi-
larity between strings. Another method may be to concat-
enate the strings, perhaps separated by a special symbol, and
compress the result as a single string; however this method
may not be able to exploit information about string bound-
aries to improve compression. Another method may be to
modify PPM to hold a sequence of strings, instead of a single
string. In this modification, the data structure may be modi-
fied to represent suffixes of all processed strings, and at the
beginning of compression of the next string, the context may
be reset to empty (e.g., the root node of the tree in the case
of a tree data structure).

[0181] Insome aspects, a Compact Directed Acyclic Word
Graph (CDAWG) data structure may be used to implement
PPM. A CDAWG is a data structure for storing alphanu-
meric data in a way that permits fast word searching with
decreased space requirements. CDAWGs have been used for
alphanumeric data storage. Aside from use in text searches,
CDAWGs have also been used in analysis of DNA
sequences in bioinformatics.

[0182] Usinga CDAWG as the data structure may provide
the advantages that the data is stored in a compact form, and
that the space requirements are minimized. The data in a
CDAWG may be stored in a compact form as in a suffix tree,
where the edges (i.e., the path between adjacent nodes) of
the tree may be labelled by more than one symbol, so that
moving between adjacent nodes may give more than one
symbol. The data tree in a CDAWG may be minimized as in
a Directed Acyclic Word Graph (DAWG), where equivalent
nodes of the tree are merged into a single node, thus
avoiding redundant nodes.

[0183] Certain implementations of CDAWG may require
input of all the symbols before the CDAWG is created. This
may be time-consuming and impractical where there is a
large amount of data. In other implementations, the
CDAWG may be created on-line (e.g., in linear time, as the
data is being read) using the algorithm disclosed in Inenaga

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

et al., “On-line construction of compact directed acyclic
word graphs”, Discrete Applied Mathematics 146(2):156-
179, 2005, which is incorporated herein by reference in its
entirety. By creating the CDAWG on-line, the alphanumeric
data may be read through one symbol at a time, and the
CDAWG may be created with suffix links, so that each
subsequent symbol can be efficiently added to the CDAWG.
[0184] The probability distribution of each symbol may be
also calculated and updated on-line as the data is being read,
thus creating a CDAWG that has the additional feature of
weights for each node and/or edge corresponding to the
probability or frequency of that node and/or edge. As each
symbol is read, the structure of the CDAWG may be
modified as needed, and the probability distribution of that
symbol may be updated. When a never-before seen symbol
is encountered, an escape symbol may be used and a
predetermined probability may be assigned to the new
symbol. In some aspects, when a new symbol is processed,
the CDAWG may be traversed to see if a node for the
symbol. already exists. As the CDAWG is traversed, each
edge and/or node that is passed may have its weight or
probability distribution updated (e.g., by increasing the
weight). If the node that is needed does not exist, a new node
and an associated escape symbol may be created in the
CDAWG, thus changing the structure of the CDAWG. In
this way, a CDAWG containing probability distributions for
each symbol is created on-line. The probability distributions
can then be used as a dictionary for compression using PPM.
[0185] In some aspects, the dictionary created by the data
structure (e.g., suffix tree or CDAWG) may be recalculated
and reduced from time to time, to keep its size down where
storage space is limited. This may be using a process similar
to the PartDict filter, where strings or symbols with lower
frequencies may be pruned from the data structure.

[0186] PPM using CDAWG may offer an improvement
over PPM using suflix trees especially for compression of a
sequence of short strings, as commonly found in databases.
For such data, a CDAWG data structure may contain over 10
times fewer nodes and 5 times fewer edges, the memory
required may be 7-10 times less, and the compression speed
may be several times faster than if using a suffix tree.
[0187] In some aspects, more than one symbol may be
encoded in one step of the compression algorithm. This is
possible because in CDAWG and in suffix trees, an edge
may be labelled by several symbols rather than a single
symbol. In order to account for the situation where the string
to be encoded matches only the beginning part of an edge
label, the number of symbols matching the edge label may
also be encoded in addition to the choice of the edge. This
number may have highly non-uniform and bi-modal distri-
bution, which can be exploited to improve the compression
ratio.

[0188] Other possible implementation details include par-
tial updates of data frequencies, unbounded context length
(e.g., where all preceding symbols are used as the context),
constant frequency for the escape symbol (e.g., the escape
symbol may be given a probability assuming uniform dis-
tribution), implementation of exclusions (e.g., correcting the
probability distribution of a symbol in a certain context to
exclude occurrences that are not possible), and use of a
special start node in the data tree. Such implementations and
techniques are not discussed here in detail, but are common
in the art. Certain combinations of these details may provide
a better compression speed and/or ratio.

enabling INNOVATION

Mar. 20, 2008

[0189] In some aspects, the data structure (e.g., suffix tree
or CDAWG) may be created when the data is first com-
pressed, and may be discarded after compression. The data
structure may be recreated every time the data is decom-
pressed.

Ouery Optimization

[0190] Query optimization refers to the optimal choice of
functions and ordering of functions to provide query results
in the shortest amount of time. Query optimization involves
simulating potential query execution plans to determine the
optimal query execution plan to answer a query. Query
optimization does not actually access data, rather it uses
information about the number of data packs 221 that will
need to be accessed to answer the query using DPNs 222 and
KNs 224. Because the data itself is not accessed, the query
plan execution simulations may be substantially faster than
the time required to actually execute the plan. Thus, query
optimization in the RDBMS 200 is closely related to query
execution. Query optimization may simulate not only the
overall candidate execution plans, but also the respective
parts to locate and avoid bottle necks that may occur in
operations required to answer the query, for example delays
that may occur as result of a non-optimal ordering of joining
operations.

[0191] Query optimization may be implemented by the
Query Optimizer 208 (FIG. 1), which may be a functional
program module. The Query Optimizer 208 may implement
a heuristic program which begins with a candidate plan for
the query, execution plan, simulates the result, then uses the
simulated results to determine the amount of data that needs
to be accessed or execution time required by the candidate
plan for the query execution plan. The Query Optimizer 208
may then attempt another candidate plan to determine if
performance may be improved.

[0192] Query optimization may use techniques such as
rough set analysis (RSA) techniques to determine which
data packs 221 need to be accessed by analyzing the
information of the DPNs 222 of each data pack 221 and the
KNs 224 associated with each data pack 221. Query opti-
mization may use the concept of positive region, negative
region, and boundary region for dealing with data packs that
are fully relevant, fully irrelevant, and partially relevant
respectively. Data packs 221 determined to be in the positive
region (e.g., fully relevant) sometimes need decompression
if the information cannot be obtained directed from the DPN
222 or KN 224, although typically not. Negative region
(e.g., fully irrelevant) data packs 221 do not need decom-
pression. Boundary region (e.g., partially relevant) data
packs 221 usually need decompression, however there may
be some special cases where decompression is not required.
[0193] Query optimization operations generally may
include the following steps:

[0194] 1. Choose a candidate plan for the query execution
plan;
[0195] 2. Simulate the data usage of the candidate plan at

the level of data packs 221 using only estimates from the
KNs 224 and without accessing (i.e., decompressing) the
underlying data;

[0196] 3. Determining the potential usefulness of struc-
tures currently loaded in memory such as decompressed data
packs 221, DPNs 222, and KNs 224;

[0197] 4. Determining the data amount of data packs 221
that need to be accessed (i.e., decoded or decompressed and

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

loaded into memory) and/or an estimate of the amount of
time to execute the query; and

[0198] 5. Repeating steps 1 to 4 for the next execution plan
candidates until the shortest execution time may be deter-
mined or a satisfactory execution time may be determined.
For examples a satisfactory execution time threshold can be
fixed based on historical or logged information about execu-
tion times of queries of comparable complexity or a timeout
(e.g., this could occur after a fixed number of heuristic steps,
or even before reaching it if there is no improvement in the
heuristic search). Alternatively, the minimum required
memory can be optimized (see step 4 above).

[0199] Each step in the above operation may be performed
taking into account the result of the previous steps. If there
is a series or conjunction of conditions calculated in series,
then records and data packs 221 which are excluded earlier
need not participate in the subsequent calculations.

Query Optimazation Example

[0200] The following example is for the purpose of illus-
tration only, and is not intended to be limiting. A partial
example of a query optimization procedure will now be
described. First, assume that the query to be resolved
involves a joining of three columns, A, B and C where A>7,
B<6, and C=“YES”. During query optimization, the first
candidate execution partial plan may first join A and B and
determine that this requires 1,000 data packs 221 to be
accessed to answer the subquery of A>7 and B<6. The Query
Optimizer 208 may then generate a second candidate execu-
tion partial plan where A and C are joined and determine that
the subquery of A>7 and C=“YES” requires 100 data packs
221 to be accessed. The Query Optimizer 208 may then
generate a third candidate execution partial plan where B
and C are joined and determine that the subquery of B<6 and
C="YES” requires 10,000 data packs 221 to be accessed. In
this case, the Query Optimizer 208 would choose to join the
second candidate execution plan where A and B are joined,
which minimizes the number of data packs 221 to be
accessed, and then join the result with C so as to minimize
the number of data packs 221 that need to be accessed to
answer the query.

[0201] Hence, the query execution and optimization steps
may interact within each other unlike in conventional
RDBMS:s. The query simulation performed during query
optimization partially executes candidate execution plans
and returns “immediate results” to the Query Optimizer 208
for further analysis before continuing the execution of the
query, and provides the possibility of further execution plan
modifications if subsequent candidate plans improve perfor-
mance. Thus, unlike conventional query optimization, the
order in which subqueries are executed may be changed
based on the intermediate results. Conventional query opti-
mization and execution approaches typically use classical
indices, do not allow optimization during execution, and
require data to be accessed in the same order as in the query
execution plan created by the query optimizer.

[0202] KN information may be used for optimization and
specifying the query execution plan, for example, using
pack-to-pack joins to determine which data packs need to be
joined during execution, although KN information may also
be used before at the optimization level. During execution
itself, after the optimal plan is determined, DPNs 222 and
data packs 221 may be utilized to answer the query. For

enabling INNOVATION

Mar. 20, 2008

example, the sums from particular data packs 221 may be
obtained from DPNs 222 if the query requires the sum over
some column.

Data Structure

[0203] FIG. 10 illustrates the organization of the data
within the RDBMS 200. In system 1000, data storage may
be separated into three primary components: a database
1004 which may be either distributed or partitioned as
shown or undistributed, a local cache 1002 database engine
invocation (e.g., a temporary cache folder on the local
HDD), and a central repository 1006. All of these data stores
1002, 1004, and 1006 may be located on different devices,
however the database 1004 and central repository 1006 are
sometimes stored together. Every KN 224 may be repre-
sented by one file in the central repository 1006.
[0204] In some aspects, the type and parameters of each
KN 224 may be encoded in its file name. In some aspects,
each KN 224 may have a file name with the format:
[0205] XXXXXX.a.b.cde.fgh.rsi
where XXXXXX is a 6-character type identifier; a, b, ¢, d,
e, f, g, h are numbers which identify objects and optionally
may be type-dependent; and .rsi identifies the file as a KN
224. The repository 1006 may contain a definition file that
describes its contents, and the definition file may have a file
name of the format: rsi_dir.rsd.
[0206] The central repository 1006 may use periodic
maintenance to check for the following possible inconsis-
tencies:
[0207] 1i.) whether there is a .rsi file not described in a
repository definition file. If so, the .rsi file should be
removed;
[0208] ii.) whether the definition file contains entries
which do not match any existing file. If so, these entries
should be removed or a matching file should be scheduled
for creation;
[0209] iii.) whether the KNs 224 are locked (e.g., marked
as “working” as described below), but no client application
202 is using these KNs 224. If so, these KNs 224 should be
unlocked.
[0210] The central repository 1006 may be accessible by
multiple client applications 202 (FIG. 1) (e.g., multiple
users) simultaneously, so the central repository 1006 may
allow parallel access. To accommodate multiple client appli-
cations 202, a file locking mechanism may be used. KNs 224
may be typically small and may be loaded entirely to
memory in which case access to them may be exclusive, for
example only one process may read or write a particular KN
224 at one time. A method for resolving sharing conflicts
may be as follows:
[0211] i.) when writing to a KN 224 is in progress, then if
a first process tries to open a KN 224 that is being written
by a second process, access of the first process to the KN 224
may be denied;
[0212] ii.) when a KN 224 increases in scope so old data
is still valid, then if the information stored by the Knowledge
Grid Manager 220 is obsolete (e.g., because the data pack(s)
on which the KN 224 is based has been increased in scope),
the KN 224 may be loaded into memory and the KN 224
may be updated after being loaded;
[0213] iii.) when a KN 224 decreases in scope so old data
may not be valid, then if the information stored by the
Knowledge Grid Manager 220 is obsolete (e.g., because the
data pack 221 on which the KN 224 is based has been

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

decreased in scope), the KN 224 may be not loaded into
memory and the operations may proceed without the KN
224 by proceeding to access the DPN 222 or data in the
respective data pack 221;

[0214] iv.) when a new KN 224 is created which supple-
ments but does not replace an old KN 224, then if the
information stored by the Knowledge Grid Manager 220 is
obsolete (e.g., because there is a new KN 224), the older KN
224 may be loaded into memory.

[0215] Unlike conventional database indices which cannot
be accessed once the underlying data has changed unless the
database indices have themselves been updated (typically,
data and database indices must be updated together, absent
which the data cannot be accessed), data packs 221 and
DPNs 222 in the RDBMS 200 may be updated indepen-
dently of any associated KNs 224. This allows updated data
in data packs 221 to be accessed almost immediately
whereas associated KNs 224 may not be available depend-
ing on whether such objects have been updated. This may be
advantageous in that some KNs 224 may be time consuming
to update. Therefore, KNs 224 which are quicker to update
may be updated shortly after the underlying data pack 221,
while more time consuming KNs 224 may be updated at a
convenient time such as when the RDBMS 200 is less
active.

[0216] When a new Knowledge Grid Manager 220 task is
scheduled, it may be written in a repository definition file. To
write to the definition file, the file may be reopened in
exclusive mode, alter which it may be read. If the file does
not yet contain the desired task, the task may be added and
the file may be written to disk and then unlocked. A similar
procedure may be used when an Knowledge Grid Manager
220 decides to execute a scheduled task: first, the definition
file may be opened exclusively to read the task definition
assuming it is still available, then the task may be marked as
“working”, the file may be written back to disk and
unlocked. Meanwhile, the KN object file may be locked and
its recalculation may start. After a successful object update,
the repository definition file may again be locked and
updated as the task is removed from the schedule.

Tiered Data Warehouse Architecture

[0217] FIG. 11 illustrates a tiered data warehouse system
1100. The system 1100 may include a primary warehouse
1102 coupled to an archival secondary warehouse 1112 via
a Tiered Warehouse Management Console 1107. Between
the primary warehouse 1102 and the secondary warehouse
1112 are the import/export modules, collectively 1103, that
facilitate data transfer between the primary warehouse 1102
and the secondary warehouse 1112. The primary warehouse
1102 may include a RDBMS 200 coupled to a database
including one or more base tables each including one or
more data records. The RDBMS 200 may include a con-
ventional RDBMS, for example such as that provided by
MySQL®, Teradata™, Oracle®, etc.

[0218] One or more users may access the primary ware-
house 1102 via respective client applications 1104 imple-
mented on user terminals (not shown). A SQL-based inter-
face may be provided by the client application 1104 to
access the primary warehouse 1102 using standard SQL
query tools. The system 1100 may optionally include one or
more of a listener 1106 which monitors and stores queries
(e.g., SELECT statements) or alternatively queries are
extracted from the primary warehouse 1102 and/or second-

enabling INNOVATION

Mar. 20, 2008

ary warehouse 1112 log files. The resulting, query log 1118
may be provided to the Query Log Analyzer 1120.

[0219] Users accessing the secondary warehouse 1112
may use the same client application 1104. A SQL-based
interface may be provided by the client application 1104 to
access the secondary warehouse 1112 using standard SQL
query tools. Unlike the primary warehouse 1102, the sec-
ondary warehouse 1112 may include an RDBMS 200
coupled to a database including one or more data packs 221
each associated with basic analytical information in the form
of DPNs 222 and having associated therewith advanced
analytical information in the form of KNs 224.

[0220] The Query Log Analyzer 1120 may be a functional
program that analyzes query information collected in the
raw query logs 1118 to determine the usage of data by users
over a given time period within the primary warehouse 1102
and secondary warehouse 1112. The Query Log Analyzer
1120 analyzes the frequency of data usage or access within
the primary warehouse 1102 and secondary warehouse 1112.
Alternatively, specific query statistics need not be recorded.
Instead of maintaining specific statistics, an approximation
of the queries on specified data (e.g., data ranges based on
time or some other factor) using a satisfactory statistical
sampling of queries may yield faster results and still provide
the desired information on user queries. The Query Log
Analyzer 1120 may also identify the user who executed the
query, the tables and columns and the manner in which the
columns where referenced within the query (e.g., part of the
result set, used in JOIN criteria or used for filtering or sorting
results).

[0221] The Query Explorer 1109 allows a user to examine
the results of the Query Log Analyzer 1120 that are stored
in the query usage statistics 1108. Depending on the fre-
quency of data usage and pre-determined performance cri-
teria, the Query Explorer Module 1109 may identify candi-
date data in the primary warehouse 1102 that may be moved
to the secondary warehouse 1112 to improve the perfor-
mance of the system 1100. The Tiered Warehouse Manage-
ment Console 1107 may manage the tiered environment,
may identify candidate data via the Query Explorer 1109 in
the primary warehouse 1102 that may be moved to the
secondary warehouse 1112, and may manage the data move-
ment (e.g., data migration) process, using the service of the
Job Management Service 1105, which coordinates the
activities of standard import and export utilities 1103 pro-
vided by the primary and secondary warehouse 1102 and
1112. The Job Management Service 1103 uses encoding
operations similar to the operations 300 described above
when exporting data from the primary warehouse 1102 to
the secondary warehouse 1112. Base tables from the primary
warehouse 1102 are encoded and stored in data packs 221
with DPNs 222 and KNs 224 in the secondary warehouse
1112.

[0222] The performance criteria of the Tiered Warehouse
Management Console 1107 may specify an access frequency
(e.g., in terms of % usage in a given time interval), relative
access rate of selected data, or other pre-defined conditions
which identify data in the primary warehouse 1102 as being
suitable for transfer and archiving in the secondary ware-
house 1112. The user may be allowed to specify parameters,
for example the user may specify that only 10% of data
should be left in the primary warehouse 1102. In this case,
the Tiered Warehouse Management Console 1107 may
search for the 10% or some other suitable percentage which

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

is most frequently used in queries to keep in the primary
warehouse 1102 and migrate the remainder to the secondary
warehouse 1112, and may express the most active 10% using
predefined time dimension ranges. Typically, data access in
the primary warehouse 1102 may be most frequent with new
or freshly added data. As data ages in the primary warehouse
1102, it typically becomes accessed less and less. In accor-
dance with some implementations, once data access falls
below some pre-determined threshold, for example if a base
table is accessed less than once a month, the data may be
selected for archiving, (e.g., to be transferred to the second-
ary warehouse 1112). The conditions and thresholds for
archiving are variable and may be set to optimize the
performance of the overall system 1100.

[0223] The Query Log Analyzer 1120 also analyzes the
usage of data in the secondary warehouse 1112 using infor-
mation collected by its respective listener and/or query log.
If data in the secondary warehouse 1112 is being accessed
more frequently, it can be exported back from the secondary
warehouse 1112 back to the primary warehouse 1102 to
satisfy the relevant performance criteria of the system 1100.
The Job Management Service 1105 may use decoding
operations similar to those described above when exporting
data from the secondary warehouse 1112 to the primary
warehouse 1102. Data packs 221 from the secondary ware-
house 1112 are decoded to the underlying base tables to be
exported back to the primary warehouse 1102.

[0224] The Query usage statistics 1108 may also be used
to optimize the KNs 224 in the database of the secondary
warehouse 1112 so as to find the optimal KNs 224 based on
query patterns, using an approach similar to the Knowledge
Grid Optimizer 240 described above. The Query Explorer
Module 1109 may also be used to analyze queries to
understand how users are relating data thereby enabling
further analysis of the data. Using this query information,
reports or other information about data usage may be used
to better organize or use the data. In addition to analyzing
query data usage with respect to time dimensions, query data
usage may also be estimated with respect to other dimen-
sions. For example, it may be possible to detect that user
group X runs queries over a much wider time ranges than
user group y, or that column A is the only column accessed
in table T by user group z. Similarly, the Query Explorer
1109 may also indicate how column data is referenced in
queries, enabling better tuning of the primary warehouse
1102. For instance if tables are frequently joined, perhaps
the tables should be combined. If a column is frequently
used for filtering, an index may improve query speed.

[0225] The tiered architecture of the system 1100 seeks to
address the problem that many data warehouses operate at or
near capacity, and that the amount and detail of data being
stored is ever increasing. While adding storage capability
may accommodate increasing amounts of data, it may be
costly and may not improve system performance or respon-
siveness. In addition, many database management systems
have limits on how much data can be handled and managed
to ensure performance levels are reasonable. The tiered
architecture of the system 1100 allows less frequently used
data, typically older data, to be removed from the primary
warehouse 1102 to a secondary warehouse 1112 where the
data can be compressed to reduce storage requirements. The
system 1100 also allows for the restoration of data from the
secondary warehouse 1112 to the primary warehouse 1102,
if desired. However, in many cases, users simply do not have

enabling INNOVATION

Mar. 20, 2008

the disk space to accommodate large data set restores,
presenting another advantage of the tiered warehouse
approach.

[0226] In accordance with the tiered architecture of the
system 1100, the primary warehouse 1102 may be imple-
mented using an RDBMS 200 suitable for handling larger
volumes of users efficiently, and configured to support a
large number of reports that are executed regularly (e.g.,
daily, weekly, monthly, or annually). In this way, the primary
warehouse 1102 may be used to reference more current data,
for example such as the last two years. The secondary
warehouse 1112 may be used to reference older data, which
typically supports more analytical functions such as where
long term histories are required to determine trends or
statistical analyses. In this way, the types of queries per-
formed on the primary warehouse 1102 and secondary
warehouse 1112 may differ in terms of database tuning.

[0227] However, the tiered architecture allows short-term
functions (e.g., reporting) to be implemented on the primary
warehouse 1102 while analytical functions may be imple-
mented on the secondary warehouse 1112. This may sim-
plify data access and may allow improved tuning of the
entire system 1100, which may improve overall performance
and lowering costs by implementing a portion of the system
1100 on a lower cost, secondary warehouse 1112 of com-
pressed data. In addition, using KNs 224 representations in
the secondary warehouse 1112 where analytical type queries
are more common may provide synergies in that the answer
to analytical queries may be found directly in the DPNs 222
and KNs 224 themselves, negating the need to access the
underlying data. Many statistical results are pre-calculated
and stored with the DPNs 222 and/or KNs 224.

[0228] FIG. 12 illustrates a tiered data warehouse system
1200. The system 1200 is similar to the system 1100 in that
it may include a primary warehouse 1206 for “current data”
or more frequently accessed data, and a secondary ware-
house 1208 for “older data” or less frequently accessed data
which may be compressed in data packs 221 and which
contains DPNs 222 and KN 224. However, the system 1200
also incorporates a Seamless Query Module 1204 and Uni-
fied Knowledge Grid 1210 for the primary warehouse 1206
and the secondary warehouse 1208. The Seamless Query
Module 1204 includes information about the data of the
primary warehouse 1206 and the secondary warehouse 1208
to provide a seamless query interface to a user via a client
application 1202. A user using the client application 1202
may be provided with a SQL query interface to perform
queries without regard to whether the data referenced by the
query is stored in the primary warehouse 1206 and/or
secondary warehouse 1208. The underlying tiered architec-
ture of the system 1200 may be invisible to the user.
Depending on the query parameters, the Seamless Query
Module 1204 may determine whether the referenced data is
in the primary warehouse 1206, secondary warehouse 1208,
or in rare cases both. The Seamless Query Module 1204 then
engages the respective database engine of the primary
warehouse 1206 and/or second warehouse 1208, as neces-
sary.

[0229] Although the methods and systems of the present
disclosure are described in the context of data packs 221 and
DPNs 222, the concept of a knowledge grid using statistical
data elements may be created also for other database sys-
tems based on a conventional database having base tables

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

and conventional database indices without the need of
storing data packs 221 and DPNs 222.

[0230] FIG. 13 illustrates a computing device architecture
1300 that may be used with the systems described. The
computing device architecture 1300 may be representative
of the client application 202, or any of the computing
devices, servers, or computers described above. The com-
puting device 1300 generally may include a bus 1301, a
microprocessor or processor 1302, a memory 1304, a dis-
play 1306, one or more user input devices 1308, and a
communication interface 1309, which may all be coupled to
the bus 1301. The computing device 1300 may additionally
include a display device (not shown) for communicating an
output to a user. In one example, the user input devices 1308
may be a keyboard or pointing device such as a mouse. The
communication interface 1309 provides an interface for
communicating with a network 1326. An operating system
1310 or applications 1312 run on the processor 1302. The
memory 1304 includes Random Access Memory (RAM)
1316, Read Only Memory (ROM) 1318, and a disk 1320. In
one example, the data processing system 1300 may include
either a client or a server. Any of the software modules or
components mentioned above may be stored in the memory
1304 for execution by the processor 1302.

[0231] In accordance with some aspects, there is provided
a method for encoding column data from a base table in one
or more data packs, the base table including one or more
columns of data, the method including: selecting a column
in the base table; selecting a compression algorithm based
on a data type in the column; compressing data from the
column using the selected compression algorithm; and stor-
ing the compressed column data in a data pack.

[0232] In some aspects, each of the two or more columns
of data may be at least one of: a string, a numeric value,
floating point value, and binary.

[0233] In some aspects, the method may further include,
before compressing the column data: generating a null mask
representing the positions of null and non-null value posi-
tions in the column; generating a reduced data set from the
column data, including removing the null position from the
column data; and wherein the data from the column com-
pressed in the compression step is the reduced data set, and
wherein the null mask is stored in the data pack the com-
pressed column data.

[0234] These and other aspects and features of the present
disclosure will become apparent to persons of ordinary skill
in the art upon review of the above detailed description,
taken in combination with the appended drawings.

[0235] While the present disclosure is primarily described
as a method, a person of ordinary skill in the art will
understand that the present disclosure is also directed to an
apparatus or system for carrying out the disclosed method
and including apparatus parts for performing each described
method step, be it by way of hardware components, a
computer programmed by appropriate software to enable the
practice of the disclosed method, by any combination of the
two, or in any other manner. Moreover, an article of manu-
facture for use with the apparatus, such as a pre-recorded
storage device or other similar computer readable medium
including program instructions recorded thereon, or a com-
puter data signal carrying computer readable program
instructions, may direct an apparatus to facilitate the practice
ofthe disclosed method. It is understood that such apparatus,

enabling INNOVATION

Mar. 20, 2008

articles of manufacture, and computer data signals also come
within the scope of the present disclosure.

[0236] The embodiments of the present disclosure
described above are intended to be examples only, for the
purposes of illustration and not intended to be limiting.
Those of skill in the art may effect alterations, modifications
and variations to the particular embodiments without depart-
ing from the scope of the present disclosure. In particular,
selected features from one or more of the above-described
embodiments may be combined to create alternative
embodiments not explicitly described, features suitable for
such combinations being readily apparent to persons skilled
in the art. The subject matter described herein in the recited
claims intends to cover and embrace all suitable changes in
technology.

What is claimed is:

1. A method for applying adaptive data compression in a
relational database system, the method using a filter cascade
having at least one compression filter stage in the filter
cascade, the method comprising:

1.) providing data input to a compression filter stage of the

filter cascade;

ii.) evaluating whether the compression filter stage pro-
vides improved compression compared to the data
input;

iii.) applying a data filter associated with the compression
filter stage to the data input if the compression filter
stage provides improved compression, to produce
reconstruction information and filtered data;

iv.) compressing the reconstruction information to be
included in a filter stream; and

v.) providing the filtered data as a compression filter stage
output for the compression filter stage.

2. The method according to claim 1, further comprising

the steps of:

vi.) determining if additional compression filter stages
exist for consideration;

vii.) providing the compression filter stage output as the
data input to a subsequent compression filter stage if
additional compression filter stages exist; and

viii.) repeating steps i.) to v.) for the subsequent com-
pression filter stage.

3. The method according to claim 2, further comprising

the step of:

ix.) repeating steps i.) through viii.) a total of n times,
where n is an integer representing the number of stages
of compression filter stages in the filter cascade.

4. The method according to claim 1, wherein the relational

database is a column-oriented relational database.

5. The method according to claim 4, wherein data cells for
columns of data in the column-oriented relational database
are formed separately and, for each of the columns of data,
the data cells are of a specified number of records grouped
together as a data unit, the data units being provided as the
data input to the compression filter stage of the filter cascade
at step i.).

6. The method according to claim 5, wherein the specified
number is selected from the group consisting of: 64 kilo-
bytes of records and 65,536 records.

7. The method according to claim 1, wherein each of the
compression filter stages has a compression algorithm for
compressing the reconstruction information and types of
compression algorithms for each of the compression filter

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

stages and parameters of the compression algorithms are
dynamically adjusted for the data input.

8. The method according to claim 7, wherein the com-
pression algorithm is selected from the group consisting of:
arithmetic encoding, range coding, Shannon-Fano-Elias
coding, Shannon coding, Huffman coding, Rice coding,
Golomb coding, Tunstall coding, and prediction by partial
matching.

9. The method according to claim 3, wherein once all of
the compression filter stages of the filter cascade are applied,
the data input that was supplied to a first compression filter
stage of the filter cascade is all represented in the filter
stream with a final compression filter stage of the filter
cascade having no output, the filter stream comprising
compressed reconstruction information from each compres-
sion filter stage of the filter cascade.

10. The method according to claim 9, wherein the data
input is recoverable by decompressing the filter stream and
applying corresponding decompression filter stages in
reverse order to the compression filter stages.

11. The method according to claim 1, wherein the com-
pression filter stages are applied in any order.

12. The method according to claim 1, wherein the com-
pression filter stages are individually applied at least one
time.

13. The method according to claim 3, wherein the data
input is a data unit having a plurality of data elements and
at least one compression filter stage of the at least one
compression filter stage of the filter cascade has a data filter
that removes null elements from the data unit and creates a
null map indicating the positions of the null elements.

14. The method according to claim 13, wherein the null
map comprises a bit map series of zeros and ones, each bit
representing each data element, a zero bit indicating the
presence of a non-null element and a one bit indicating the
presence of a null element, the resulting bit map series being
included in the reconstruction information.

15. The method according to claim 13 wherein the null
elements are removed from the data input, and the data input
with the null elements removed is provided in the filtered
data.

16. The method according to claim 3, wherein the data
input includes a data unit having a plurality of data elements
of numeric data, the numeric data having an element with a
minimum value, and at least one compression filter stage has
a data filter that subtracts the minimum value from all of the
data elements of the data unit, the data elements with the
minimum value subtracted being provided as the filtered
data, the minimum value being included in the reconstruc-
tion information.

17. The method according to claim 3, wherein the data
input includes a data unit having a plurality of data elements
of numeric data, the numeric data having a greatest common
divisor (GCD) and at least one compression filter stage has
a data filter that reduces each data element of the data unit
by dividing each data element by the GCD and providing the
reduced data unit as the filtered data, the GCD value being
included in the reconstruction information.

18. The method according to claim 3, wherein the data
input includes a data unit having a plurality of data elements,
and at least one compression filter stage has a data filter that
builds a partial dictionary of elements that have an occur-
rence frequency in the data unit greater than a predetermined
frequency, the elements of the data unit that are included in

19

enabling INNOVATION

Mar. 20, 2008

the dictionary being removed from the data unit and being
included in the reconstruction information, data elements of
the data unit that are not included in the dictionary being
included in the filtered data.

19. The method according to claim 3, wherein the data
input includes a data unit having a plurality of data elements,
and at least one compression filter stage has a data filter that
builds a partial dictionary of elements comprising selected
bits of all of the data elements, the selected bits being
removed from the data unit and included in the reconstruc-
tion information, the remaining bits of the data elements
being included in the filtered data.

20. The method according to claim 19, wherein the
selected bits comprise top bits of the data elements.

21. The method according to claim 19, wherein the
selected bits comprise bottom bits of the data elements.

22. The method according to claim 3, wherein the data
input includes a data unit having a plurality of data elements
of numeric data, the data elements having an element with
a maximum value, and at least one compression filter stage
has a data filter that calculates, for each element, a difference
between one element and the next element and the differ-
ences are represented in modulo of the maximum value +1,
the maximum value being included in the reconstruction
information, and a first data element and the differences
being included in the filtered data.

23. The method according to claim 3, wherein the data
input includes a data unit having a plurality of data elements,
at least one data element having an outlying value, and at
least one compression filter stage has a data filter that
removes the outlying value from the data input, the outlying
value and an indicator of the position of the outlying value
being included in the reconstruction information, the data
input with the outlying value removed being included in the
filtered data.

24. The method according to claim 3, wherein the data
input includes a data unit having a plurality of elements and
at least one compression filter stage has a data filter that
includes all the elements in the reconstruction information,
and the compression filter stage output is empty.

25. The method according to claim 3, wherein the data
input includes a data unit having a plurality of alphanumeric
elements, each element comprising at least one alphanu-
meric character, and at least one compression filter stage has
a data filter that:

processes the element character by character as long

sequences and produces a suffix tree of all possible
word suffixes;

calculates a probability of occurrence of each character;

and

provides the suffix tree information as a dictionary of
values and associated probabilities as each character is
processed, the dictionary being included in the recon-
struction information;
wherein the probabilities in the dictionary are updated as
each subsequent character is processed.

26. The method according to claim 3, wherein each
compression filter stage has an associated predetermined
compression algorithm for compressing the reconstruction
information.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

27. A method for performing data compression using a
filter cascade on data in a relational database, the method
comprising the steps of:

providing data input having a plurality of data elements;

applying a first data filter of a first compression filter stage

to the data input, producing reconstruction information
and filtered data;

compressing the reconstruction information and including

the compressed reconstruction information in a filter
stream,

providing the filtered data as a compression filter output;

and

repeating the applying and compressing steps using the

compression filter output as an input for at least one
subsequent compression filter stage.

28. The method of claim 27, wherein the relational
database is a column-oriented relational database.

29. The method of claim 28, wherein data cells for
columns of data in the column-oriented relational database
are formed separately and, for each of the columns of data,
the data cells are of a specified number of records grouped
together as a data unit, the data units being provided as the
data input.

30. The method of claim 29, wherein the specified number
is selected from the group consisting of: 64 kilobytes of
records and 65,536 records.

31. The method of claim 27, wherein the compressing step
comprises applying a compression algorithm, the compres-
sion algorithm for each compression filter and parameters of
the compression algorithm being dynamically adjustable
based on the data input.

32. The method of claim 31, wherein the compression
algorithm is selected from the group consisting of: arith-
metic coding, range coding, Shannon-Fano-Elias coding,
Shannon coding, Huffman coding, Rice coding, Golomb
coding, Tunstall coding, and prediction by partial matching.

33. The method of claim 27 wherein the applying and
compressing steps are repeated until the compression filter
output of a final compression filter stage in the filter cascade
is empty.

34. The method of claim 27 wherein the compression
filter stages are applied in a pre-determined order.

35. The method of claim 27 wherein at least one com-
pression filter stage is applied more than once.

36. The method of claim 27 further comprising, before the
step of applying the data filter:

evaluating whether a given compression filter stage would

provide improved compression compared to the data
input; and

where evaluation of the given compression filter stage

finds that the given compression filter stage does not
provide improved compression, the given compression
filter stage is not applied, and the evaluating step is
repeated with at least one subsequent compression filter
stage.

37. The method of claim 36 wherein the evaluating step
comprises an algorithm adapted for the given compression
filter stage.

38. The method of claim 27 wherein at least one com-
pression filter stage has a data filter that filters the data input
by removing null elements in the data input and creates a
null mask indicating the location of the null elements, the

20

enabling INNOVATION

Mar. 20, 2008

null mask being included in the reconstruction information
and the data having the null elements removed being
included in the filtered data.

39. The method of claim 38, wherein the null map
comprises a bit map series of zeros and ones, each bit
representing each data element, a zero bit indicating the
presence of a non-null element and a one bit indicating the
presence of a null element, the resulting bit map series being
included in the reconstruction information.

40. The method of claim 38 wherein the null elements are
removed from the data input, and the data input with the null
elements removed is provided in the filtered data.

41. The method of claim 27 wherein the data input has a
data element with a minimum value, and at least one
compression filter stage has a data filter that filters the data
input by subtracting the minimum value from each element,
the minimum value being included in the reconstruction
information and the data input having the minimum value
subtracted from each data element being included in the
filtered data.

42. The method of claim 27 wherein the data input has a
greatest common divisor (GCD) among a number of ele-
ments, and at least one compression filter stage has a data
filter that filters the data input by dividing each data element
by the GCD, the GCD being included in the reconstruction
information and the data input with the number of elements
having been divided by the GCD being included in the
filtered data.

43. The method of claim 27 wherein the data input has a
first group of elements each having a high frequency of
occurrence and second group of elements each having a low
frequency of occurrence, and at least one compression filter
stage has a data filter that filters the data input by associating
a symbol with each element in the first group, creating a
dictionary associating each symbol with each respective
element of the first group and respective frequencies of
occurrence, the dictionary and the first group of elements
being included in the reconstruction information and the
elements of the second group being included in the filtered
data.

44. The method of claim 27 wherein the data input has a
plurality of elements, each comprising a plurality of bits, and
at least one compression filter has a data filter that creates a
dictionary associating selected bits of each element with a
symbol, the dictionary and the selected bits being included
in the reconstruction information and the elements with the
selected bits removed being included in the filtered data.

45. The method of claim 44 wherein the selected bits
comprise top bits of each element.

46. The method of claim 44 wherein the selected bits
comprise bottom bits of each element.

47. The method of claim 27 wherein the data input has a
plurality of numeric elements, the elements having a maxi-
mum value, and at least one compression filter has a data
filter that, for each element, calculates differences between
one element and a subsequent element, the differences being
represented in modulo of the maximum value +1, the
differences forming a difference sequence, and the maxi-
mum value being included in the reconstruction information
and a first element and the difference sequence being
included in the filtered data.

48. A method for applying data compression for alpha-
numeric data in a relational database, the alphanumeric data

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al
21

comprising a plurality of alphanumeric characters, the
method comprising the steps of:

providing the alphanumeric data to a data compression

module;

determining a probability distribution for each character

of the alphanumeric data using a suffix-prediction algo-
rithm; and

compressing, the alphanumeric data using the probability

distribution.
49. The method of claim 48 wherein the suffix-prediction
algorithm comprises the steps of:
processing the alphanumeric data at least one character at
a time;

creating a data structure for the alphanumeric data where
each subsequent at least one character is added to the
data structure based on preceding characters; and

calculating the probability distribution for each subse-
quent at least one character based on preceding char-
acters, where the probability distribution is updated as
each at least one character is processed.

50. The method of claim 48 wherein the determining step
comprises:

forming a compact directed acyclic word graph

(CDAWG) data structure for the alphanumeric data;
and

determining the probability distribution from the

CDAWG data structure and using the probability dis-
tribution in a prediction by partial matching (PPM)
compression algorithm.

51. The method of claim 48 wherein the forming step is
performed in linear time, as the alphanumeric data is pro-
cessed one character at a time.

52. The method of claim 48, wherein the relational
database is a column-oriented relational database.

53. A method of data decompression for compressed data
in a relational database, the method comprising, the steps of:

providing a filter stream comprising compressed data that

was compressed using a filter cascade comprising at
least one compression filter stage;

retrieving from the compressed data the identity and order

of the compression filter stages that were applied to the
compressed data; and

applying corresponding decompression filters for each of

the compression filter stages in a reverse order in which
the compression filter stages were applied during com-
pression.

54. The method of claim 53 further comprising, before the
applying step, the step of processing the compressed data
through the compression filter stages in the order in which
the compression filter stages were applied during compres-
sion, thus identifying the corresponding decompression fil-
ters.

55. The method of claim 53, wherein the relational
database is a column-oriented relational database.

56. A relational database system for applying adaptive
data compression, the system using a filter cascade having at
least one compression filter stage in the filter cascade, the
system comprising:

a database server having:

a microprocessor for controlling operation of the data-
base server; and
a memory coupled to the microprocessor;

enabling INNOVATION

Mar. 20, 2008

the database server including a compression module resi-
dent in the memory for execution by the microproces-
sor, the compression module being configured to:

i.) receive data input to a compression filter stage of the
filter cascade;

ii.) evaluate whether the compression filter stage pro-
vides improved compression compared to the data
input;

iii.) apply a data filter associated with the compression
filter stage to the data input if the compression filter
stage provides improved compression, to produce
reconstruction information and filtered data;

iv.) compress the reconstruction information to be
included in a filter stream; and

v.) provide the filtered data as a compression filter stage
output for the compression filter stage.

57. The system according to claim 56, wherein the com-
pression module is further configured to:

vi.) determine if additional compression filter stages exist

for consideration;

vii.) provide the compression filter stage output as the data
input to a subsequent compression filter stage if addi-
tional compression filter stages exist; and

viii.) repeat i.) to v.) for the subsequent compression filter
stage.

58. The system according to claim 57, wherein the com-

pression module is further configured to:

ix.) repeat i.) through viii.) for each compression filter
stage in the filter cascade.

59. The system according to claim 56, wherein the rela-

tional database is a column-oriented relational database.

60. The system according to claim 59, wherein data cells
for columns of data in the column-oriented relational data-
base are formed separately and, for each of the columns of
data, the data cells are of a specified number of records
grouped together as a data unit, the data units being provided
as the data input to the compression filter stage of the filter
cascade at step i.).

61. The system according to claim 60, wherein the speci-
fied number is selected from the group consisting of: 64
kilobytes of records and 65,536 records.

62. The system according to claim 56, wherein each of the
compression filter stages has a compression algorithm for
compressing the reconstruction information and types of
compression algorithms for each of the compression filter
stages and parameters of the compression algorithms are
dynamically adjusted for the data input.

63. The system according to claim 62, wherein the com-
pression algorithm is selected from the group consisting of:
arithmetic encoding, range coding, Shannon-Fano-Elias
coding, Shannon coding, Huffman coding, Rice coding,
Golomb coding, Tunstall coding, and prediction by partial
matching.

64. The system according to claim 58, wherein once all of
the compression filter stages of the filter cascade are applied,
the data input that was supplied to a first compression filter
stage of the filter cascade is all represented in the filter
stream with a final compression filter stage of the filter
cascade having no output, the filter stream comprising
compressed reconstruction information from each compres-
sion filter stage of the filter cascade.

65. The system according to claim 64, wherein the data
input is recoverable by decompressing the filter stream and

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

applying corresponding decompression filter stages in
reverse order to the compression filter stages.

66. The system according to claim 56, wherein the com-
pression filter stages are applied in any order.

67. The system according to claim 56, wherein the com-
pression filter stages are individually applied at least one
time.

68. The system according to claim 58, wherein the data
input is a data unit having a plurality of data elements and
at least one compression filter stage of the at least one
compression filter stage of the filter cascade has a data filter
that removes null elements from the data unit and creates a
null map indicating the positions of the null elements.

69. The system according to claim 68, wherein the null
map comprises a bit map series of zeros and ones, each bit
representing each data element, a zero bit indicating the
presence of a non-null element and a one bit indicating the
presence of a null element, the resulting bit map series being
included in the reconstruction information.

70. The system according to claim 68 wherein the null
elements are removed from the data input, and the data input
with the null elements removed is provided in the filtered
data.

71. The system according to claim 58, wherein the data
input includes a data unit having a plurality of data elements
of numeric data, the numeric data having an element with a
minimum value and at least one compression filter stage has
a data filter that subtracts the minimum value from all of the
data elements of the data unit, the data elements with the
minimum value subtracted being provided as the filtered
data, the minimum value being included in the reconstruc-
tion information.

72. The system according to claim 58, wherein the data
input includes a data unit having a plurality of data elements
of numeric data, the numeric data having a greatest common
divisor (GCD) and at least one compression filter stage has
a data filter that reduces each data element of the data unit
by dividing each data element by the GCD and providing the
reduced data unit as the filtered data, the GCD value being
included in the reconstruction information.

73. The system according to claim 58, wherein the data
input includes a data unit having a plurality of data elements,
and at least one compression filter stage has a data filter that
builds a partial dictionary of elements that have an occur-
rence frequency in the data unit greater than a predetermined
frequency, the elements of the data unit that are included in
the dictionary being removed from the data unit and being
included in the reconstruction information, data elements of
the data unit that are not included in the dictionary being
included in the filtered data.

74. The system according to claim 58, wherein the data
input includes a data unit having a plurality of data elements,
and at least one compression filter stage has a data filter that
builds a partial dictionary of elements comprising selected
bits of all of the data elements, the selected bits being
removed from the data unit and included in the reconstruc-
tion information, the remaining bits of the data elements
being included in the filtered data.

75. The system according to claim 74, wherein the
selected bits comprise top bits of the data elements.

76. The system according to claim 74, wherein the
selected bits comprise bottom bits of the data elements.

77. The system according to claim 58, wherein the data
input includes a data unit having a plurality of data elements

22

enabling INNOVATION

Mar. 20, 2008

of numeric data, the data elements having an element with
a maximum value, and at least one compression filter stage
has a data filter that calculates, for each element; a difference
between one element and the next element and the differ-
ences are represented in modulo of the maximum value +1,
the maximum value being included in the reconstruction
information, and a first data element and the differences
being included in the filtered data.

78. The system according to claim 58, wherein the data
input includes a data unit having a plurality of data elements,
at least one data element having an outlying value, and at
least one compression filter stage has a data filter that
removes the outlying value from the data input, the outlying
value and an indicator of the position of the outlying value
being included in the reconstruction information, the data
input with the outlying value removed being included in the
filtered data.

79. The system according to claim 58, wherein the data
input includes a data unit having a plurality of elements and
at least one compression filter stage has a data filter that
includes all the elements in the reconstruction information,
and the compression filter stage output is empty.

80. The system according to claim 58, wherein the data
input includes a data unit having a plurality of alphanumeric
elements, each element comprising at least one alphanu-
meric character, and at least one compression filter stage has
a data filter designed to:

process the element character by character as long

sequences aid produces a suffix tree of all possible word
suffixes;

calculate a probability of occurrence of each character;

and

provide the suffix tree information as a dictionary of

values and associated probabilities as each character is
processed, the dictionary being included in the recon-
struction information;
wherein the probabilities in the dictionary are updated as
each subsequent character is processed.

81. The system according to claim 58, wherein each
compression filter stage has an associated predetermined
compression algorithm for compressing the reconstruction
information.

82. A relational database system for performing data
compression using a filter cascade on database data, the
system comprising:

a database server comprising:

a microprocessor for controlling operation of the data-
base server; and

a memory coupled to the microprocessor;

the database server including a compression module resi-

dent in the memory for execution by the microproces-

sor, the compression module being configured to:

i.) receive data input having a plurality of data ele-
ments;

ii.)apply a first data filter of a first compression filter
stage to the data input, to produce reconstruction
information and filtered data;

iii.) compress the reconstruction information and
include the compressed reconstruction information
in a filter stream;

iv.) provide the filtered data as a compression filter
output; and

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

v.) repeat ii.) and iii.) using the compression filter
output as an input for at least one subsequent com-
pression filter stage.

83. The system of claim 82, wherein the relational data-
base is a column-oriented relational database.

84. The system of claim 83, wherein data cells for
columns of data in the column-oriented relational database
are formed separately and, for each of the columns of data,
the data cells are of a specified number of records grouped
together as a data unit, the data units being provided as the
data input.

85. The system of claim 84, wherein the specified number
is selected from the group consisting of: 64 kilobytes of
records and 65,536 records.

86. The system of claim 82, wherein iii.) comprises the
application of a compression algorithm, the compression
algorithm for each compression filter and parameters of the
compression algorithm being dynamically adjustable based
oil the data input.

87. The system of claim 86, wherein the compression
algorithm is selected from the group consisting of: arith-
metic coding, range coding, Shannon-Fano-Elias coding,
Shannon coding, Huffman coding, Rice coding, Golomb
coding, Tunstall coding, and prediction by partial matching.

88. The system of claim 82 wherein the compression
module is further configured to repeat ii.) and iii.) until the
compression filter output of a final compression filter stage
in the filter cascade is empty.

89. The system of claim 82 wherein the compression filter
stages are applied in a pre-determined order.

90. The system of claim 82 wherein at least one com-
pression filter stage is applied more than once.

91. The system of claim 82 wherein the compression
module is further configured to:

evaluate whether a given compression filter stage would

provide improved compression compared to the data

input;

wherein evaluation of the given compression filter stage

finds that the given compression filter stage does not

provide improved compression, the given compression

filter stage is not applied, and the evaluation is repeated

with at least one subsequent compression filter stage;
before applying a data filter.

92. The system of claim 91 wherein the evaluation
comprises application of an algorithm adapted for the given
compression filter stage.

93. The system of claim 82 wherein at least one com-
pression filter stage has a data filter that filters the data input
by removing null elements in the data input and creates a
null mask indicating the location of the null elements, the
null mask being included in the reconstruction information
and the data having the null elements removed being
included in the filtered data.

94. The system of claim 93, wherein the null map com-
prises a bit map series of zeros and ones, each bit repre-
senting each data element, a zero bit indicating the presence
of a non-null element and a one bit indicating the presence
of a null element, the resulting bit map series being included
in the reconstruction information.

95. The system of claim 93 wherein the null elements are
removed from the data input, and the data input with the null
elements removed is provided in the filtered data.

96. The system of claim 82 wherein the data input has a
data element with a minimum value, and at least one

enabling INNOVATION

Mar. 20, 2008

compression filter stage has a data filter that filters the data
input by subtracting the minimum value from each element,
the minimum value being included in the reconstruction
information and the data input having the minimum value
subtracted from each data element being included in the
filtered data.

97. The system of claim 82 wherein the data input has a
greatest common divisor (GCD) among a number of ele-
ments, and at least one compression filter stage has a data
filter that filters the data input by dividing each data element
by the GCD, the GCD being included in the reconstruction
information and the data input with the number of elements
having been divided by the GCD being included in the
filtered data.

98. The system of claim 82 wherein the data input has a
first group of elements each having a high frequency of
occurrence and second group of elements each having a low
frequency of occurrence, and at least one compression filter
stage has a data filter that filters the data input by associating
a symbol with each element in the first group, creating a
dictionary associating each symbol with each respective
element of the first group and respective frequencies of
occurrence, the dictionary and the first group of elements
being included in the reconstruction information and the
elements of the second group being included in the filtered
data.

99. The system of claim 82 wherein the data input has a
plurality of elements, each comprising a plurality of bits, and
at least one compression filter has a data filter that creates a
dictionary associating selected bits of each element with a
symbol, the dictionary and the selected bits being included
in the reconstruction information and the elements with the
selected bits removed being included in the filtered data.

100. The system of claim 99 wherein the selected bits
comprise top bits of each element.

101. The system of claim 99 wherein the selected bits
comprise bottom bits of each element.

102. The system of claim 82 wherein the data input has a
plurality of numeric elements, the elements having a maxi-
mum value, and at least one compression filter has a data
filter that, for each element, calculates differences between
one element and a subsequent element, the differences being
represented in modulo of the maximum value +1, the
differences forming a difference sequence, and the maxi-
mum value being included in the reconstruction information
and a first element and the difference sequence being
included in the filtered data.

103. A relational database system for applying data com-
pression for alphanumeric data, the alphanumeric data com-
prising a plurality of alphanumeric characters, the system
comprising:

a database server comprising:

a microprocessor for controlling operation of the data-
base server; and

a memory coupled to the microprocessor;

the database server including a compression module resi-

dent in the memory for execution by the microproces-

sor, the compression module being configured to:

receive the alphanumeric data;

determine a probability distribution for each character
of the alphanumeric data using a suffix-prediction
algorithm; and

compress the alphanumeric data using the probability
distribution.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071818 Al

104. The system of claim 103 wherein the compression
module is further configured to:

process the alphanumeric data at least one character at a

time;

create a data structure for the alphanumeric data where

each subsequent at least one character is added to the

data structure based on preceding characters; and
calculate the probability distribution for each subsequent
at least one character based on preceding characters,
where the probability distribution is updated as each at
least one character is processed;
in order to perforn the suffix prediction algorithm.

105. The system of claim 103 wherein the compression
module is further configured to:

form a compact directed acyclic word graph (CDAWG)

data structure for the alphanumeric data; and

determine the probability distribution from the CDAWG
data structure and using the probability distribution in

a prediction by partial matching (PPM) compression

algorithm;

in order to determine the probability distribution.

106. The system of claim 105 wherein the CDAWG is
formed in linear time, as the alphanumeric data is processed
one character at a time.

107. The system of claim 103, wherein the relational
database is a column-oriented relational database.

108. A relational database system for decompression of
compressed data, the system comprising:

a database server comprising:

a microprocessor for controlling operation of the data-
base server; and

a memory coupled to the microprocessor;

the database server including a decompression module

resident in the memory for execution by the micropro-

cessor, the decompression module being configured to:

i.) receive a filter stream comprising compressed data
that was compressed using a filter cascade compris-
ing at least one compression filter stage;

ii.) retrieve from the compressed data the identity and
order of the compression filter stages that were
applied to the compressed data; and

iii.) apply corresponding decompression filters for each
of the compression filter stages in a reverse order in
which the compression filter stages were applied
during compression.

enabling INNOVATION

Mar. 20, 2008

109. The system of claim 108 wherein the decompression
module is further configured to:

process the compressed data through the compression
filter stages in the order in which the compression filter
stages were applied during compression, in order to
identify the corresponding decompression filters;

before applying the decompression filters.

110. The system of claim 108, wherein the relational
database is a column-oriented relational database.

111. A computer program product having a computer
readable medium tangibly embodying code for applying
adaptive data compression in a relational database system,
the adaptive data compression using a filter cascade having
at least one compression filter stage in the filter cascade, the
computer program product comprising:

i.) code for providing data input to a compression filter

stage of the filter cascade;

ii.) code for evaluating whether the compression filter
stage provides improved compression compared to the
data input;

iii.) code for applying a data filter associated with the
compression filter stage to the data input if the com-
pression filter stage provides improved compression, to
produce reconstruction information and filtered data;

iv.) code for compressing the reconstruction information
to be included in a filter stream; and

v.) code for providing the filtered data as a compression
filter stage output for the compression filter stage.

112. The computer program product according to claim
111, further comprising:

vi.) code for determining if additional compression filter

stages exist for consideration;

vii.) code for providing the compression filter stage output
as the data input to a subsequent compression filter
stage if additional compression filter stages exist; and

viii.) code for repeating code i.) to v.) for the subsequent
compression filter stage.

113. The computer program product according to claim

112, further comprising:

ix.) code for repeating code i.) through viii.) a total of n
times, where n is an integer representing the number of
stages of compression filter stages in the filter cascade.

http://www.patentlens.net/

